Abstract:
A display apparatus according to an embodiment of the present disclosure includes: a display panel including a plurality of pixels; and a drive device that outputs a driving signal to the display panel. The driving signal causes one of the pixels to emit light many times by an active PWM drive method in a 1-frame period.
Abstract:
A sample-and-hold circuit of the disclosure includes: a differential pair that includes a first MOS transistor and a second MOS transistor, in which respective source terminals of the first MOS transistor and the second MOS transistor are interconnected to a specified node, and an input signal is input to a gate terminal of the first MOS transistor; a capacitor that is coupled to a gate terminal of the second MOS transistor, and samples and holds the input signal; a switch transistor that has a source terminal coupled to the capacitor and the gate terminal of the second MOS transistor, and causes the capacitor to sample and hold the input signal upon application of a predetermined ON voltage; and an ON-voltage control transistor that couples a gate terminal of the switch transistor to the specified node when causing the input signal to be sampled and held.
Abstract:
There is provided a mounting substrate that makes a seam more inconspicuous when a plurality of mounting substrates are tiled, and an electronic apparatus including the mounting substrate.The mounting substrate includes a wiring substrate, a plurality of pixels (11) arranged in a matrix in a pixel region of the wiring substrate, and a plurality of drivers (14A) that are disposed in the pixel region and select the pixels in units of two or more pixels. Each of the pixels includes an optical element that emits or receives light, and a pixel circuit that controls light emission or light reception of the optical element. One or more of the plurality of drivers are assigned to each pixel row or every plurality of pixel rows.
Abstract:
A display apparatus includes pixels arranged in a two-dimensional matrix pattern, each of which including a light-emitting unit and a drive circuit that drives the unit and includes a comparator circuit that compares a control pulse with potential based on signal voltage and outputs predetermined voltage based on the result, a transistor driving the unit in response to the predetermined voltage, and a current source that supplies current to the unit during driving of the transistor, includes a current-source transistor, a capacity unit connected to a gate electrode of the current-source transistor, a differential amplifier that detects a differential between voltage based on reference constant current and reference voltage, and a transistor controlling the voltage based on reference constant current depending on current flowing through the current-source transistor, and controls gate potential of the current-source transistor on the basis of output of the amplifier in synchronization with a scanning signal.
Abstract:
A comparator circuit includes a differential circuit unit which detects a difference between two input signals, a current supply unit which supplies a current to the differential circuit unit, and a control unit which detects an operation timing of the differential circuit unit and controls the current supplied to the differential circuit unit by the current supply unit according to a detection result thereof.
Abstract:
A display apparatus includes pixels arranged in a two-dimensional matrix pattern, each of which including a light-emitting unit and a drive circuit that drives the unit and includes a comparator circuit that compares a control pulse with potential based on signal voltage and outputs predetermined voltage based on the result, a transistor driving the unit in response to the predetermined voltage, and a current source that supplies current to the unit during driving of the transistor, includes a current-source transistor, a capacity unit connected to a gate electrode of the current-source transistor, a differential amplifier that detects a differential between voltage based on reference constant current and reference voltage, and a transistor controlling the voltage based on reference constant current depending on current flowing through the current-source transistor, and controls gate potential of the current-source transistor on the basis of output of the amplifier in synchronization with a scanning signal.
Abstract:
There is provided a mounting substrate that makes a seam more inconspicuous when a plurality of mounting substrates are tiled, and an electronic apparatus including the mounting substrate.The mounting substrate includes a wiring substrate, a plurality of pixels (11) arranged in a matrix in a pixel region of the wiring substrate, and a plurality of drivers (14A) that are disposed in the pixel region and select the pixels in units of two or more pixels. Each of the pixels includes an optical element that emits or receives light, and a pixel circuit that controls light emission or light reception of the optical element. One or more of the plurality of drivers are assigned to each pixel row or every plurality of pixel rows.
Abstract:
A comparator circuit includes a differential circuit unit which detects a difference between two input signals, a current supply unit which supplies a current to the differential circuit unit, and a control unit which detects an operation timing of the differential circuit unit and controls the current supplied to the differential circuit unit by the current supply unit according to a detection result thereof.
Abstract:
A light emitting device driving circuit according to the present disclosure includes a sawtooth waveform generating unit for generating a sawtooth waveform voltage having a sawtooth waveform voltage change based on at least two reference signals to be input and a comparison unit for comparing an analog signal voltage with the sawtooth waveform voltage. The light emitting device driving circuit drives a light emitting device based on the comparison result of the comparison unit. Accordingly, a comparison operation using a sawtooth waveform voltage having a waveform which is not disturbed is performed.
Abstract:
There is provided a display device including a display unit having pixels, each of which includes a luminescence element that individually becomes luminous depending on a current amount and a pixel circuit for controlling a current applied to the luminescence element according to a voltage signal, where the pixels are arranged in a matrix pattern. The display device includes an average luminance calculator (200) for calculating average luminance for a predetermined period of the input picture signal, and also includes a luminous time setter (202) for setting an effective duty depending on the calculated average luminance by the average luminance calculator (200), the effective duty regulating for each one frame a luminous time for which the luminescence element is luminous. The luminous time setter (202) sets the effective duty such that a luminescence amount regulated by a preset reference duty and possible maximum luminance of a picture signal.