Natural human-computer interaction system based on multi-sensing data fusion

    公开(公告)号:US11409357B2

    公开(公告)日:2022-08-09

    申请号:US16475384

    申请日:2018-05-23

    Abstract: A natural human-computer interaction system based on multi-sensing data fusion comprises a MEMS anti tracking device, a visual tracking device, a force feedback device and a PC terminal. The MEMS arm tracking device is composed of three sets of independent MEMS sensors for collecting arm joint angle information and measuring an arm motion trajectory. The visual tracking device is composed of a binocular camera for collecting image information and measuring a finger motion trajectory. The force feedback device is mounted in a palm of an operator for providing a feedback force to the finger. The PC terminal comprises a data display module, an arm motion calculating module, an image processing module, a mechanics calculating module and a virtual scene rendering module. The system tracks the arm motion trajectory and the finger motion trajectory of the operator and provides force feedback interaction to the finger of the operator.

    Flexible finger-wearable haptic feedback device

    公开(公告)号:US11287887B2

    公开(公告)日:2022-03-29

    申请号:US17271207

    申请日:2019-03-21

    Abstract: A flexible finger-wearable haptic feedback device includes a fingertip sleeve sheathing a distal phalanx of a finger, a middle sleeve sheathing a middle phalanx of the finger, a proximal sleeve sheathing a proximal phalanx of the finger, outer and inner transmission rods having bending elasticity. The outer transmission rod is fixed on the fingertip sleeve at one end, positioned at a back of a hand at the other end and connected with an outer driver. The inner transmission rod is fixed on the fingertip sleeve at one end, positioned at a palm at the other end and connected with an inner driver. The fingertip sleeve is provided with first and second contact pressure sensors respectively connected with the ends of the outer and inner transmission rods, and an inner wall of the fingertip finger sleeve contacting the finger is provided with a film pressure sensor.

    Multi-degree-of-freedom myoelectric artificial hand control system and method for using same

    公开(公告)号:US12269161B2

    公开(公告)日:2025-04-08

    申请号:US17628753

    申请日:2020-06-03

    Abstract: Provided are a multi-degree-of-freedom myoelectric artificial hand control system and a method for using same. The system comprises a robotic hand, a robotic wrist (2), a stump receiving cavity (1) and a data processor (3), wherein the robotic hand and the stump receiving cavity (1) are respectively mounted on two ends of the robotic wrist (2); a multi-channel myoelectric array electrode oversleeve, a control unit circuit board, and a battery are connected in the stump receiving cavity (1); and the other end of the control unit circuit board is connected to the robotic hand and the robotic wrist (2). The method for using the system comprises the following steps: (S1) a user wearing a multi-channel myoelectric array electrode oversleeve, and connecting a battery and a control unit circuit board; (S2) the user completing a gesture, collecting a surface electromyography signal and then uploading same to a data processor (3); (S3) the data processor (3) receiving the surface electromyography signal and inputting same into a neural network algorithm to generate a gesture prediction model; and (S4) the user controlling the multi-degree-of-freedom movement of the robotic wrist (2) and the robotic hand. By means of the system, continuous gestures and the gesture strength thereof can be identified, and multi-degree-of-freedom gestures can be made.

    Exoskeleton finger rehabilitation training device and usage method thereof

    公开(公告)号:US12083064B2

    公开(公告)日:2024-09-10

    申请号:US17311325

    申请日:2020-06-28

    Abstract: A exoskeleton finger rehabilitation training device includes an exoskeleton finger rehabilitation training mechanism including a supporting base, a finger sleeve actuating mechanism, and a finger joint sleeve connected to a power output end of the finger sleeve actuating mechanism, wherein the finger joint sleeve can be sheathed at the periphery of a finger joint to be rehabilitated, and the finger joint sleeve can be driven by the power actuation of the finger sleeve actuating mechanism to drive the finger joint to be rehabilitated in order to passively bend or stretch; the supporting base includes a profiled shell, with an inner surface of the profiled shell being configured based on the profile of the complete back of a palm or part of the back of the palm, and with the back of the profiled shell being provided with a power fixed base.

    Miniature combined multi-axis force sensor structure

    公开(公告)号:US11920993B1

    公开(公告)日:2024-03-05

    申请号:US18025186

    申请日:2022-05-12

    CPC classification number: G01L1/18 G01L5/1627

    Abstract: A miniature combined multi-axis force sensor structure includes a sensor body, a first shell and a second shell, two horizontal main beams and two vertical main beams are arranged on the periphery of an inner round platform in a cross shape, tail ends of the horizontal main beams and the vertical main beams are each connected to a vertical floating beam, and the horizontal floating beams consist of two thin-walled cambered beams; two ends of the horizontal floating beam are each connected to an outer round platform by means of an annular platform; the sensor body is arranged between the first shell and the second shell; strain gauges are stuck on the horizontal main beams and the vertical main beams to form two Wheatstone bridges; and when force/torque acts on the cross beam, the sensor deforms, and the resistance value of strain gauge at corresponding position changes.

    Brain-computer interface method and system based on real-time closed loop vibration stimulation enhancement

    公开(公告)号:US11379039B2

    公开(公告)日:2022-07-05

    申请号:US16977751

    申请日:2019-03-21

    Abstract: Brain-computer interface method and system include displaying and providing a motor imagery task to a subject, and collecting a generated digital electroencephalogram signal; reading the digital electroencephalogram signal, performing interception if a preset time period is exceeded, and performing continuous reading if not; performing band-pass filtering, obtaining time-frequency characteristics of the digital electroencephalogram signal, and extracting a frequency value with highest frequency energy as a main frequency; obtaining an instantaneous phase of the digital electroencephalogram signal; generating predicted sine waves by respectively using the main frequency and the instantaneous phase as a frequency and an initial phase of sine waves, and predicting and obtaining real-time phase information; and judging whether the real-time phase is in a vibration stimulation application phase interval, generating and outputting a control instruction, and controlling a vibration motor to vibrate and to stimulate a sensory channel of the subject according to the control instruction.

    Lightweight hand exoskeleton force feedback apparatus

    公开(公告)号:US12271523B2

    公开(公告)日:2025-04-08

    申请号:US18634995

    申请日:2024-04-14

    Abstract: Disclosed is a lightweight hand exoskeleton force feedback apparatus, including a driver, a first rotating link, a second rotating link, a first linkage link, a second linkage link, a finger sleeve, and a pressure sensor fixing member; the driver is worn on a back of metacarpal bone of a human hand, the finger sleeve is fixed on an index finger, and the pressure sensor fixing member is fixed below the index finger; when the human hand bends to simulate a state of grasping an object, the driver drives the first rotating link to couple with the first linkage link and the second linkage link through the second rotating link to drive the finger sleeve to bend and stretch, force feedback is applied to the fingertip, and a pressure is accordingly imposed on a pressure sensor of the pressure sensor fixing member, so that closed-loop force feedback control is implemented.

Patent Agency Ranking