Abstract:
A capacitive input device has a sensor electrode pattern disposed on a first side of a substrate. The sensor electrode pattern comprises a plurality of sensor electrode elements disposed on the first side of a first substrate. A plurality of routing traces is disposed along a first edge of the sensor electrode pattern on the first side of the substrate and configured to communicatively couple at least some of the sensor electrodes with a processing system. A pair of guard traces is disposed in the same layer as and brackets the plurality of routing traces. A guard overlaps the routing traces, is disposed proximate the routing traces on the first side of the substrate, and ohmically couples the pair of guard traces with one another. A second insulator is disposed between the routing traces and the guard. The second insulator and the first insulator are disposed in the same layer.
Abstract:
A processing system for a transcapacitive sensing device comprises a plurality of sensor electrodes sectioned by a seam, a first sensor electrode integrated circuit, and a second sensor electrode integrated circuit. The plurality of sensor electrodes comprises a plurality of transmitter electrodes intersecting a plurality of receiver electrodes. The first sensor electrode integrated circuit is communicatively coupled to a first subset of the plurality of sensor electrodes. The second sensor electrode integrated circuit is communicatively coupled to a second subset of the plurality of sensor electrodes. The first sensor electrode integrated circuit and the second sensor electrode integrated circuit are configured to operate the plurality of sensor electrodes in synchrony to transmit with the plurality of transmitter electrodes a set of transmitter signals and receive with the plurality of receiver electrodes a set of responses corresponding to the set of transmitter signals.
Abstract:
In a method of operating a touch screen, an object interaction is detected with the touch screen while in a first doze mode. It is determined if a detected object interaction with the touch screen is a valid input object interaction with the touch screen. In response to determining the object interaction is a valid input object interaction, the touch screen is transitioned from the first doze mode to a gesture recognition mode. The touch screen is transitioned from the gesture recognition mode to an active mode in response to a determination of a valid gesture interaction with the touch screen by the input object.
Abstract:
Embodiments of the invention generally provide a method and apparatus that is configured to reduce the effects of interference that is undesirably provided to a transmitter signal that is delivered from a transmitter signal generating device to a sensor processor to determine if an input object is disposed within a touch sensing region of a touch sensing device. In one embodiment, the sensor processor includes a receiver channel that has circuitry that is configured to separately receive a transmitter signal delivered from a display processor and a sensor processor reference signal that is based on a display processor reference signal to reliably sense the presence of an object. Embodiments of the invention described herein thus provide an improved apparatus and method for reliably sensing the presence of an object by a touch sensing device.
Abstract:
Embodiments of the invention generally provide an input device with display screens that periodically update (refresh) the screen by selectively driving common electrodes corresponding to pixels in a display line. In general, the input devices drive each electrode until each display line (and each pixel) of a display frame is updated. In addition to updating the display, the input device may perform capacitive sensing using the display screen as a proximity sensing area. To do this, the input device may interleave periods of capacitive sensing between periods of updating the display based on a display frame. For example, the input device may update the first half of display lines of the display screen, pause display updating, perform capacitive sensing, and finish updating the rest of the display lines. Further still, the input device may use common electrodes for both updating the display and performing capacitive sensing.
Abstract:
Systems and methods for aligning images are disclosed. A method includes: receiving a first skeletonized biometric image; generating a first coarse representation of the first skeletonized biometric image; identifying a set of candidate transformations that align the first skeletonized biometric image to a second skeletonized biometric image based on comparing transformed versions of the first coarse representation to a second coarse representation of the second skeletonized biometric image; selecting a first candidate transformation as the candidate transformation that minimizes a difference metric between a transformed version of the first skeletonized biometric image and the second skeletonized biometric image; and determining whether the first skeletonized biometric image transformed by the first candidate transformation matches the second skeletonized biometric image, wherein the first skeletonized biometric image transformed by the first candidate transformation matches the second skeletonized biometric image if the difference metric satisfies a threshold.
Abstract:
In an example, a processing system for a capacitive sensing device includes a sensor module and a determination module. The sensor module includes sensor circuitry coupled to a plurality of transmitter electrodes and a plurality of receiver electrodes. The sensor module is configured to receive resulting signals from the plurality of receiver electrodes during a plurality of noise acquisition bursts while suspending transmission with the plurality of transmitter electrodes. The resulting signals include the effects of noise. The sensor module is further configured to introduce at least one time delay between a respective at least one pair of the plurality of noise acquisition bursts. The determination module is configured to determine an interference measurement for a first frequency based on the resulting signals.
Abstract:
Embodiments of the invention generally provide a method and apparatus that is configured to reduce the effects of interference that is undesirably provided to a transmitter signal that is delivered from a transmitter signal generating device to a sensor processor to determine if an input object is disposed within a touch sensing region of a touch sensing device. In one embodiment, the sensor processor includes a receiver channel that has circuitry that is configured to separately receive a transmitter signal delivered from a display processor and a sensor processor reference signal that is based on a display processor reference signal to reliably sense the presence of an object. Embodiments of the invention described herein thus provide an improved apparatus and method for reliably sensing the presence of an object by a touch sensing device.
Abstract:
In an example, a processing system for a capacitive sensing device includes a sensor module and a determination module. The sensor module comprises a receiver, coupled to a sensor electrode, configured to receive a capacitive sensing signal. The receiver includes an in-phase channel and a quadrature channel. The in-phase channel is configured to mix the capacitive sensing signal with a local oscillator signal substantially in phase with the capacitive sensing signal. The quadrature channel is configured to mix the capacitive sensing signal with a phase-shifted signal near ninety degrees out of phase with the capacitive sensing signal. The determination module is configured to measure a change in capacitance in response to a demodulated signal of the in-phase channel concurrently with measuring a non-coherent signal in response to a demodulated signal of the quadrature channel.
Abstract:
A processing system comprises a sensor module and a determination module. The sensor module is configured to acquire changes in absolute capacitance from a first plurality of sensor electrodes of a sensor electrode pattern. The sensor module is also configured to utilize the changes in absolute capacitance to determine a drive order in which to drive sensor electrodes of the first plurality of sensor electrodes to acquire changes in transcapacitance between the first plurality of sensor electrodes and a second plurality of sensor electrodes of the sensor electrode pattern. The determination module is configured to determine positional information for an input object in a sensing region of the capacitive sensing device based on the changes in transcapacitance.