Abstract:
An image control technology that enables low power consumption with less compromise in the overall quality of the image is disclosed, in which color information of an image is saved while minimizing degradation of picture quality, and improving text readability. In one aspect, an image control display device includes an image controller configured to measure at least one of luminance values and chroma values of pixels of an input image. In addition, the image controller is configured to detect an edge using the at least one of luminance and chroma values and is configured to invert color information of the input image into inverted image data. The image controller is further configured to generate output image data comprising an inverted region and an exception region, where the inverted region displays the inverted image data and the exception region displays uninverted input image data. The display device additionally includes a data driver configured to receive the output image data and to apply a plurality of data voltages corresponding to the output image data to a display panel.
Abstract:
A display device includes: a plurality of pixels; a degradation compensator for using a temperature weight value for a reference temperature, a luminance weight value for a reference luminance, and a material weight value for a reference material, for calculating a reference using time when a degradation rate of the pixels is changed to a reference degradation rate of a reference degradation curve, and for generating a control variable according to the reference using time; and a power supply for controlling a voltage difference between a first power source voltage for supplying a driving current to the pixels and a second power source voltage according to the control variable.
Abstract:
An apparatus and method for compensating color characteristics in individual display devices that each include a display unit including a plurality of pixels to display images according to compensated image data signals, a test data input section to transmit a predetermined test image data signal to the pixels to display a test image, a luminance measuring unit to receive luminance information from the display unit displaying the test image and determine actual luminance ratios of a first color, a second color, and a third color from the received luminance information, a compensation ratio determiner to calculate a compensation ratio from both the actual and reference luminance ratios of each color and a data compensator to generate the compensated image data signals by adjusting external input video signals according to the compensation ratio.
Abstract:
Provided is a display device including: a display panel comprising a plurality of pixels, each of the plurality of pixels configured to display one of three primary colors; and a color compensator configured to receive color data comprising gradation data corresponding to each of the three primary colors and configured to increase chroma of a color in which the three primary colors are mixed, by compensating a color of the color data based on color ratios of the three primary colors.
Abstract:
A method of controlling a dimming operation is disclosed. In one aspect, the method includes determining the brightness of an input image frame based on input image data, determining an input dimming value based on the brightness of the input image frame, selectively performing the dimming operation is based on a comparison of an absolute value of a difference between the input dimming value and a current output dimming value against a predetermined threshold value, where a value generated by adjusting the current output dimming value by a predetermined adjustment value is output as a next output dimming value when performing the dimming operation, and the input dimming value is output as the next output dimming value when not performing the dimming operation.
Abstract:
A data signal processing device includes a load calculator and a compensation processor. The load calculator calculates an on-pixel rate (OPR) based on image data signals and positional weight values. The positional weight values are determined based on locations of pixels in a display panel. The OPR is proportional to a frame luminance load, which corresponds to a sum of driving currents for the pixels to emit light in each of a plurality of frames. The compensation processor compensates distorted luminance caused by the frame luminance load based on the OPR.
Abstract:
An apparatus and method for compensating color characteristics in individual display devices that each include a display unit including a plurality of pixels to display images according to compensated image data signals, a test data input section to transmit a predetermined test image data signal to the pixels to display a test image, a luminance measuring unit to receive luminance information from the display unit displaying the test image and determine actual luminance ratios of a first color, a second color, and a third color from the received luminance information, a compensation ratio determiner to calculate a compensation ratio from both the actual and reference luminance ratios of each color and a data compensator to generate the compensated image data signals by adjusting external input video signals according to the compensation ratio.
Abstract:
A device for mapping a color gamut includes a color gamut determinator and a color gamut mapper. The color gamut determinator determines an output color gamut using a gain value corresponding to information of a first color gamut, information of a second color gamut and a control condition. The color gamut mapper converts the color gamut of an input image data into the output color gamut. Accordingly, it is possible to provide a device and method for mapping a color gamut, which can determine an optimal color gamut corresponding to a change in control condition, and accordingly improve color accuracy and color reproducibility.
Abstract:
An image control technology that enables low power consumption with less compromise in the overall quality of the image is disclosed, in which color information of an image is saved while minimizing degradation of picture quality, and improving text readability. In one aspect, an image control display device includes an image controller configured to measure at least one of luminance values and chroma values of pixels of an input image. In addition, the image controller is configured to detect an edge using the at least one of luminance and chroma values and is configured to invert color information of the input image into inverted image data. The image controller is further configured to generate output image data comprising an inverted region and an exception region, where the inverted region displays the inverted image data and the exception region displays uninverted input image data. The display device additionally includes a data driver configured to receive the output image data and to apply a plurality of data voltages corresponding to the output image data to a display panel.
Abstract:
A device for mapping a color gamut includes a color gamut determinator and a color gamut mapper. The color gamut determinator determines an output color gamut using a gain value corresponding to information of a first color gamut, information of a second color gamut and a control condition. The color gamut mapper converts the color gamut of an input image data into the output color gamut. Accordingly, it is possible to provide a device and method for mapping a color gamut, which can determine an optimal color gamut corresponding to a change in control condition, and accordingly improve color accuracy and color reproducibility.