Abstract:
A method of manufacturing a polarizer, the method including: forming a metal layer on a substrate; forming a hard mask on the metal layer; forming an adhesion layer on a portion of the hard mask; forming a polymer layer on the hard mask and the adhesion layer; pressing a mold on the polymer layer to form a lattice pattern in association with the polymer layer; removing the mold and a portion of the lattice pattern; and patterning the adhesion layer, the hard mask, and the metal layer using a remaining portion of the lattice pattern as a mask.
Abstract:
An array substrate includes a reflecting pattern, a protecting pattern, a first passivation layer and a thin film transistor. The reflecting pattern is on a substrate. The protecting pattern is on the reflecting pattern and overlaps the reflecting pattern. The first passivation layer covers the substrate and the protecting pattern. The thin film transistor is on the first passivation layer and overlaps the reflecting pattern. The first passivation layer includes a silicon oxycarbide (SiOC).
Abstract:
A polarizer includes a base substrate and a dielectric stacked layer. The dielectric stacked layer in includes a first dielectric layer and second dielectric layer. The first dielectric layer has a high refractive index and a second dielectric layer has a low refractive index. A wire grid pattern is disposed on the dielectric stacked layer. The wire grid pattern has a line width, a separation distance and a pitch. The pitch is a sum of the line width and the separation distance. Adjacent grids of the wire grid pattern are spaced apart by the separation distance.