Abstract:
An imprint lithography method includes disposing a mask layer on a base substrate in first and in second areas, reducing a thickness of the mask layer in the first area, disposing a first planarization layer on the mask layer in the first and second areas, forming a first imprint pattern on the first planarization layer, forming a first planarization layer pattern by etching the first planarization layer using the first imprint pattern, forming a first mask pattern in the first area by etching the mask layer using the first planarization layer pattern, diposing a second planarization layer on the first mask pattern and the mask layer in the first and second areas, forming a second imprint pattern on the second planarization layer, forming a second planarization layer pattern by etching the planarization layer using the second imprint pattern, and forming a second mask pattern in the second area.
Abstract:
A polarizer includes a base substrate, a metal wire layer disposed on the base substrate, and a plurality of wire grid patterns disposed on the base substrate or the metal wire layer.
Abstract:
A polarizer includes an opening defined in the polarizer and through which light transmits; a non-opening which is adjacent to the opening and blocks the light; a plurality of metal lines elongated in a first direction, and separated from each other in a second direction different than the first direction, in the opening; and a plate-type pattern in the non-opening. A height of the metal lines is smaller than a height of the plate-type pattern, from a same reference; and an interval in the second direction and between adjacent metal lines is smaller than a wavelength of visible light rays.
Abstract:
Disclosed is a display device including a display module, and a sensor layer below the display module for detecting light reflected from the display module, and including a base layer, a sensing layer on the base layer and including a sensing element that detects the light, and an optical pattern layer between the sensing layer and the display module, and including a light-shield section defining openings arranged at intervals when viewed in a plan view, and transmission sections respectively located in the openings.
Abstract:
Provided are a method of manufacturing a mold, a method of manufacturing a polarizer, and a display apparatus including the polarizer. According to one or more exemplary embodiments, a method of manufacturing a mold, the method including: forming a polymer pattern on a substrate, the polymer pattern including protrusions; forming a wire grid template portion on the substrate by etching, the substrate being etched using protrusions of the polymer pattern as a mask; forming a cover mask covering a portion of the wire grid template portion; forming a recess in the substrate by etching, the substrate being etched using the cover mask, the recess having a bottom surface lower than an upper surface of the wire grid template portion; and removing the cover mask.
Abstract:
A display substrate and a method of manufacturing a display substrate, the display substrate including a base substrate; a gate electrode on the base substrate; an insulation layer on the gate electrode; a source electrode and a drain electrode on the insulation layer and overlapping the gate electrode; and a pixel electrode electrically connected to the drain electrode, wherein a cavity is formed between the gate electrode and the insulation layer.
Abstract:
A method of manufacturing a polarizer, the method including: forming a metal layer on a substrate; forming a hard mask on the metal layer; forming an adhesion layer on a portion of the hard mask; forming a polymer layer on the hard mask and the adhesion layer; pressing a mold on the polymer layer to form a lattice pattern in association with the polymer layer; removing the mold and a portion of the lattice pattern; and patterning the adhesion layer, the hard mask, and the metal layer using a remaining portion of the lattice pattern as a mask.
Abstract:
A display apparatus may include a backlight assembly configured to generate an emitted light and a display panel configured to receive the emitted light to display images. The display panel may include a display substrate, an opposite substrate facing the display substrate, a wire grid polarizer, and a reflection reducing layer. The wire grid polarizer may be disposed on at least one of the display substrate and the opposite substrate to polarize the emitted light. The reflection reducing layer may have a grid shape and may be disposed on the wire grid polarizer. The reflection reducing layer may reduce an amount of a light reflected by the wire grid polarizer.
Abstract:
An array substrate includes a reflecting pattern, a protecting pattern, a first passivation layer and a thin film transistor. The reflecting pattern is on a substrate. The protecting pattern is on the reflecting pattern and overlaps the reflecting pattern. The first passivation layer covers the substrate and the protecting pattern. The thin film transistor is on the first passivation layer and overlaps the reflecting pattern. The first passivation layer includes a silicon oxycarbide (SiOC).
Abstract:
A polarizer includes a base substrate and a dielectric stacked layer. The dielectric stacked layer in includes a first dielectric layer and second dielectric layer. The first dielectric layer has a high refractive index and a second dielectric layer has a low refractive index. A wire grid pattern is disposed on the dielectric stacked layer. The wire grid pattern has a line width, a separation distance and a pitch. The pitch is a sum of the line width and the separation distance. Adjacent grids of the wire grid pattern are spaced apart by the separation distance.