Abstract:
An apparatus for compensating for a skew is provided between data signals supplied through a plurality of data lines and a clock signal supplied through a clock line. A skew compensation apparatus includes a plurality of data receivers each configured to delay a data signal supplied through a corresponding data line based on associated phase difference data and to output the delayed data signal, a clock receiver configured to receive a clock signal supplied through a clock line, and a phase controller configured to select any one of the plurality of data receivers and to output, to the selected data receiver, a phase control signal configured to correct the phase difference data of the selected data receiver based on the phase difference between a data signal output from the selected data receiver and the clock signal.
Abstract:
An organic light emitting display device includes a first electrode on a substrate, an auxiliary electrode on the substrate, the auxiliary electrode being spaced apart from the first electrode, a protrusion on the auxiliary electrode, a pixel defining layer overlapping end portions of the first electrode and of the auxiliary electrode, the pixel defining layer separating the first electrode from the auxiliary electrode, an organic layer on the first electrode, and a second electrode on the organic layer, the protrusion electrically connecting the second electrode to the auxiliary electrode.
Abstract:
An organic light emitting diode device includes a first electrode and a second electrode facing each other, a charge-generating layer interposed between the first electrode and the second electrode, a first light emitting unit that emits blue and is interposed between the first electrode and the charge-generating layer, and a second light emitting unit that emits white by combining the blue and is interposed between the second electrode and the charge-generating layer. The first light emitting unit includes a blue emission layer, a first charge transport layer disposed on one side of the blue emission layer and including an alkali metal complex compound and a first charge transport material, and a second charge transport layer disposed on one side of the first charge transport layer and including the alkali metal complex compound and a second charge transport material that has different charge mobility from the first charge transport material.
Abstract:
An organic light-emitting device having a resonance structure includes a substrate; a first electrode and a second electrode on the substrate and facing each other; an emission layer between the first electrode and the second electrode; a first hole transport layer between the first electrode and the emission layer; and a second hole transport layer between the first hole transport layer and the emission layer. An electron mobility of the second hole transport layer is 5 times to 100 times greater than an electron mobility of the first hole transport layer, and a thickness of the second hole transport layer corresponds to a resonance distance of a wavelength of emission light of the emission layer.
Abstract:
An organic light-emitting device having a resonance structure includes a substrate; a first electrode and a second electrode on the substrate and facing each other; an emission layer between the first electrode and the second electrode; a first hole transport layer between the first electrode and the emission layer; and a second hole transport layer between the first hole transport layer and the emission layer. An electron mobility of the second hole transport layer is 5 times to 100 times greater than an electron mobility of the first hole transport layer, and a thickness of the second hole transport layer corresponds to a resonance distance of a wavelength of emission light of the emission layer.
Abstract:
In an aspect, an organic light-emitting display apparatus including: a substrate; at least one color filter formed on the substrate; an overcoat layer covering the at least one color filter; a first passivation layer formed on the overcoat layer; a light scattering layer formed on the first passivation layer; a first electrode formed on the light scattering layer; a second electrode facing the first electrode; and an organic layer located between the first and second electrodes is provided.