Abstract:
In a sealant dispenser and a method of sealing a display panel using the sealant dispenser, the sealant dispenser includes a tracking part, a nozzle part and a body. The tracking part tracks a tracking line on a base substrate, the base substrate is divided into a display area and a non-display area. The nozzle part is spaced apart from the tracking part, and injects a sealant from an end portion of the nozzle part and forms a seal line on the base substrate at a same time the tracking part tracks the tracking line. The tracking part and the nozzle part are mounted on the body.
Abstract:
In a photo alignment method, a substrate and a mask are aligned so that the substrate is spaced apart from the mask by a predetermined gap. An organic layer is formed on the substrate. The mask has a transmission portion and a light blocking portion. Light is irradiated through the mask in a direction substantially parallel with an interface between the transmission portion and the light blocking portion of the mask. Polymer chains are formed on an upper portion of the organic layer. The polymer chains are aligned in an alignment direction toward an incident direction of the light. Locations of the substrate and the mask are sensed in real time. The mask is transported to a predetermined location with respect to the substrate based on the sensed locations of the substrate and the mask.
Abstract:
A display panel includes an array substrate, an opposite substrate facing the array substrate, and a liquid crystal layer disposed between the array substrate and the opposite substrate. The array substrate includes a display area and a non-display area surrounding the display area, and the non-display area includes a first non-display area disposed adjacent to a side portion of the display area and a second non-display area other than the first non-display area. The first non-display area overlaps the opposite substrate. The array substrate and the opposite substrate have the same or substantially the same area and a wire member is disposed under the array substrate to be connected to an external circuit module. Accordingly, the display panel does not need an extra space for the wire member, and thus the non-display area is reduced.
Abstract:
A color conversion display panel includes a first color conversion layer and a second color conversion layer disposed on a color conversion substrate and including semiconductor nanocrystals, and a transmission layer, wherein a first distance between the first and second color conversion layers is different from a second distance between one of the first and second color conversion layers and the transmission layer.
Abstract:
A photo alignment including a copolymer of a diamine and a dianhydride, wherein the copolymer includes a repeating unit including a first group derived from the diamine and a second group derived from the dianhydride, and wherein any one of the first group and the second group includes a photoreactive group and the other one of the first group and the second group includes at least one selected from a tert-butyl group, a tert-butoxy group, a tert-butyloxycarbonyl group, and a di-tert-butyloxycarbonyl group.
Abstract:
Among data voltages applied to a plurality of pixels on a display panel, a first data voltage is shifted from a first original data voltage by a first value, a second data voltage is shifted from a second original data voltage by a second value, and a third data voltage is shifted from a third original data voltage by a third value to compensate for AC and DC afterimages. A common voltage generator provides an optimal common voltage for the third data voltage when the temperature of the liquid crystal panel assembly is lower than a reference temperature and provides an optimal common voltage for the first data voltage or the second data voltage when the temperature of the liquid crystal panel assembly is higher than or equal to the reference temperature. The first, second, and third values correspond to respective kickback voltages of the respective gray level data voltages.
Abstract:
Instead of sealing together the upper and lower panels of a display device with only a solid-filled sealing material, a vacuum region is provided in suction-force-applying communication with at least one of the panels and anchored to the other so as to pull the panels together due to pressure difference with and ambient atmosphere. The display device includes: a vacuum region defined by a pair of spaced apart, resilient and gas impermeable support barriers formed to integrally extend from at least one of the upper and lower panels of the display device and having the other end in vacuum region closing contact with the other display panel where the vacuum region is positioned in a peripheral area of the display device.
Abstract:
A display apparatus includes an array substrate an opposite substrate facing the array substrate, and a liquid crystal layer disposed between the array substrate and the opposite substrate. The array substrate includes a display area, a non-display area, including first and second non-display areas, a pad area, the first non-display area adjacent to the pad area, a first base substrate disposed in the display area and in the non-display area, an organic polymer layer disposed in the pad area and in the first non-display area, a thin film transistor disposed in the display area, a pixel electrode connected to the thin film transistor, and a signal input pad connected to the thin film transistor and disposed on the organic polymer layer in the pad area. The organic polymer layer is disposed on the first base substrate in the first non-display area.
Abstract:
A display apparatus includes a display panel, a gate driver, and a data driver. The display panel includes a display area in which an image is displayed and a non-display area disposed adjacent to the display area. The display panel includes an insulating substrate which has a groove. The gate driver is disposed to overlap with the display area when viewed in a plan view. At least part of the gate driver is formed on the groove.