Abstract:
An organic light-emitting display device includes: pixels; and a data driver including a plurality of current measurers connected to the pixels via at least one data line, each of the current measurers including: a first measurement circuit including: a first operational amplifier including a non-inverted input terminal to which a first reference voltage is applied, and an inverted input terminal connected to a first pixel from among the pixels; and a first feedback capacitor connected between the inverted input terminal and an output terminal of the first operational amplifier; and a second measurement circuit including: a second operational amplifier including a non-inverted input terminal to which a second reference voltage is applied, and an inverted input terminal connected to a second pixel from among the pixels; and a second feedback capacitor connected between the inverted input terminal and an output terminal of the second operational amplifier.
Abstract:
An organic light-emitting display includes: a display panel including first and second pixels, each having an organic light-emitting diode; and a data driver including a first operational amplifier having a non-inverting terminal coupled to a reference voltage terminal and an inverting terminal coupled to the first pixel, and a second operational amplifier having a non-inverting terminal coupled to the reference voltage terminal and an inverting terminal coupled to the second pixel. The first pixel includes a sensing transistor, a first driving transistor, and a first switch transistor. The second pixel includes a second driving transistor and a second switch transistor.
Abstract:
An organic light-emitting display device includes: pixels; and a data driver including a plurality of current measurers connected to the pixels via at least one data line, each of the current measurers including: a first measurement circuit including: a first operational amplifier including a non-inverted input terminal to which a first reference voltage is applied, and an inverted input terminal connected to a first pixel from among the pixels; and a first feedback capacitor connected between the inverted input terminal and an output terminal of the first operational amplifier; and a second measurement circuit including: a second operational amplifier including a non-inverted input terminal to which a second reference voltage is applied, and an inverted input terminal connected to a second pixel from among the pixels; and a second feedback capacitor connected between the inverted input terminal and an output terminal of the second operational amplifier.
Abstract:
An organic light-emitting display includes: a display panel including first and second pixels, each having an organic light-emitting diode; and a data driver including a first operational amplifier having a non-inverting terminal coupled to a reference voltage terminal and an inverting terminal coupled to the first pixel, and a second operational amplifier having a non-inverting terminal coupled to the reference voltage terminal and an inverting terminal coupled to the second pixel. The first pixel includes a sensing transistor, a first driving transistor, and a first switch transistor. The second pixel includes a second driving transistor and a second switch transistor.
Abstract:
Disclosed is a touch sensing device, including: a touch panel unit including first electrodes and second electrodes; a driving unit configured to generate a driving signal for detecting a change in capacitance within the touch panel unit; a switching unit configured to transmit the driving signal generated by the driving unit to any one of the first electrodes of the touch panel unit, and receive noise from another one of the first electrodes of the touch panel unit; a noise sensing unit configured to sense the noise received from the switching unit; and a touch sensing unit configured to detect a touch position based on detection signals received through the second electrodes of the touch panel unit and the noise sensed by the noise sensing unit.
Abstract:
A non-linear gamma compensation current mode digital-analog converter includes: a first digital-analog converter block configured to: receive a digital signal, a first reference voltage, and a gamma adjustment voltage, and provide a reference current to a ground, wherein a first current flowing to a first current output terminal is determined according to the digital signal and the gamma adjustment voltage; and a second digital-analog converter block configured to: receive the digital signal, a second reference voltage, and a ground voltage, and provide the first current to the first digital-analog converter, wherein a second current flowing to a second current output terminal is determined according to the digital signal and the first current.
Abstract:
In an electronic device, touch coordinates, which are not pixel shift calibrated, are not transmitted from an application processor to a timing controller. Instead, pixel shift data are supplied to a touch position calculating unit disposed in a driving circuit or the application processor, and the touch position calculating unit generates pixel shift calibrated touch coordinates by reflecting the pixel shift data when calculating a touch position based on detection signals from a touch sensor. Accordingly, it is not necessary to transmit touch coordinates, which are not pixel shift calibrated, from the application processor to the timing controller, thereby decreasing a delay and power consumption due to frequency transception.
Abstract:
A display device including pixels; a leakage current compensator connected to at least one of data lines connected to the pixels; and an integrator connected to the leakage current compensator. The leakage current compensator is configured to store a voltage that corresponds to a leakage current that flows to the at least one data line, and to flow the leakage current to ground from the at least one data line according to a voltage that corresponds to the leakage current. The integrator is configured to receive a pixel current generated by subtracting the leakage current from a measurement current that flows to the at least one data line, and to output a difference value between a pixel voltage that corresponds to the pixel current and a reference voltage.
Abstract:
A display device according to an embodiment of the present invention includes: a pixel configured to emit light according to a data signal supplied to a data line, a power source voltage supplier configured to supply a power source voltage to the pixel, a driving transistor configured to drive the pixel to be emitted according to the data signal and the power source voltage, and a sensor configured to supply a test signal to a data line and to detect a sensing current flowing to the data line through the driving transistor according to the test signal.
Abstract:
A display device including pixels; a leakage current compensator connected to at least one of data lines connected to the pixels; and an integrator connected to the leakage current compensator. The leakage current compensator is configured to store a voltage that corresponds to a leakage current that flows to the at least one data line, and to flow the leakage current to ground from the at least one data line according to a voltage that corresponds to the leakage current. The integrator is configured to receive a pixel current generated by subtracting the leakage current from a measurement current that flows to the at least one data line, and to output a difference value between a pixel voltage that corresponds to the pixel current and a reference voltage.