Abstract:
A display apparatus includes: a base substrate including a display area and a non-display area adjacent to the display area; a first power supply wire in the non-display area, a first power supply voltage being applied to the first power supply wire; a second power supply wire in the non-display area and spaced apart from the first power supply wire, a second power supply voltage being applied to the second power supply wire; and a dam overlapping the first power supply wire and the second power supply wire, having a first height on the first power supply wire, and having a second height greater than the first height between the first power supply wire and the second power supply wire.
Abstract:
A display device includes a substrate including a display area and a non-display area, a reference voltage supply line disposed in the non-display area and transmitting a reference voltage, and a driving voltage supply line disposed in the non-display area and transmitting a driving voltage. The reference voltage supply line includes a straight line part extending in a first direction and a curved line part extending from the straight line part to be bent, and the curved line part of the reference voltage supply line is disposed along a periphery of the display area.
Abstract:
A display device includes a signal line extending in a first direction, a first transistor configured to control a driving current, a light-emitting element electrically coupled to a second electrode of the first transistor, a second transistor electrically coupled to a first electrode of the first transistor and configured to transfer a data voltage, a first scan line electrically coupled to a gate electrode of the second transistor and extending in the first direction, a third transistor including a first electrode electrically coupled to the second electrode of the first transistor and a second electrode electrically coupled to a gate electrode of the first transistor and a second scan line electrically coupled to a gate electrode of the third transistor and extending in the first direction, wherein the second scan line overlaps one selected from among the signal line and the first scan line.
Abstract:
In a display device including a notch portion of a non-emission region, the display device includes: a plurality of pixels; a plurality of scan lines connected to the plurality of pixels; and a load adjusting portion connected to the scan lines on both sides of the notch portion and adjacent to an upper end portion of the notch portion, wherein the load adjusting portion includes: a load adjusting wiring connected to the scan lines on both sides of the notch portion; a first load adjusting electrode in a different layer from the load adjusting wiring and overlapping the load adjusting wiring; and a second load adjusting electrode in a different layer from the load adjusting wiring and the first load adjusting electrode and overlapping the load adjusting wiring.
Abstract:
A display device includes a substrate including a pixel area including a pixel; a peripheral area adjacent to the pixel area; and a boundary between the pixel area and the peripheral area, the boundary comprising a rounded corner; a data driver in the peripheral area; a data line through which a data signal is provided from the data driver to the pixel; and an initialization voltage source in the peripheral area and connected to the pixel, the initialization voltage source extended along the rounded corner of the boundary between the pixel area and the peripheral area. Along the rounded corner of the boundary, the initialization voltage source overlaps the data line along a thickness direction.
Abstract:
An organic light-emitting display including a data driver connected to a plurality of data lines disposed in a first direction, a scan driver connected to a plurality of scan lines disposed in a second direction intersecting the first direction, and a display panel including a pixel group which includes first through fourth pixel units respectively connected to j-th through (j+3)-th data lines among the data lines. The first through fourth pixel units are connected to an i-th scan line among the scan lines and disposed in the first direction, where i and j are natural numbers equal to or greater than one.