Abstract:
A method implemented by a device to measure a bodily parameter includes transmitting, by a transmit (Tx) antenna of an antenna pair, a first radar pulse to a receive (Rx) antenna of the antenna pair. The method also includes receiving, by the receive (Rx) antenna, the first radar pulse. The first radar pulse travels through a radar target between the Tx antenna and the Rx antenna. The method further includes transmitting, by the Tx antenna, a second radar pulse to the Rx antenna. In addition the method includes receiving, by the Rx antenna, the second radar pulse, wherein the second radar pulse travels through the radar target between the Tx antenna and the Rx antenna. The method also includes determining a bodily parameter within the radar target as a function of the transmission and the reception of the first radar pulse and the second radar pulse.
Abstract:
An image recognition method includes: receiving an input image of a first quality; extracting an input feature of a second quality of the input image from the input image by inputting the input image to an encoding model in an image recognizing model; and generating a recognition result for the input image based on the input feature.
Abstract:
A processor-implemented facial image generating method includes: determining a first feature vector associated with a pose and a second feature vector associated with an identity by encoding an input image including a face; determining a flipped first feature vector by flipping the first feature vector with respect to an axis in a corresponding space; determining an assistant feature vector based on the flipped first feature vector and rotation information corresponding to the input image; determining a final feature vector based on the first feature vector and the assistant feature vector; and generating an output image including a rotated face by decoding the final feature vector and the second feature vector based on the rotation information.
Abstract:
A speaker authentication method and apparatus may extract input speaker features corresponding to a plurality of frames of an input speech of an object, estimate discriminable speaker sections corresponding to the plurality of frames, and dynamically match the input speaker features to pre-enrolled enrolled speaker features based on the discriminable speaker section.
Abstract:
A processor-implemented neural network method includes: determining, using a neural network, a feature vector based on a training image of a first class among a plurality of classes; determining, using the neural network, plural feature angles between the feature vector and class vectors of other classes among the plurality of classes; determining a margin based on a class angle between a first class vector of the first class and a second class vector of a second class, among the class vectors, and a feature angle between the feature vector and the first class vector; determining a loss value using a loss function including an angle with the margin applied to the feature angle and the plural feature angles; and training the neural network by updating, based on the loss value, either one or both of one or more parameters of the neural network and one or more of the class vectors.