Abstract:
Disclosed is a method of encoding a video, the method including: splitting a current picture into at least one maximum coding unit; determining a coded depth to output a final encoding result according to at least one split region obtained by splitting a region of the maximum coding unit according to depths, by encoding the at least one split region, based on a depth that deepens in proportion to the number of times the region of the maximum coding unit is split; and outputting image data constituting the final encoding result according to the at least one split region, and encoding information about the coded depth and a prediction mode, according to the at least one maximum coding unit.
Abstract:
A computed tomography (CT) apparatus includes a reconstruction unit which reconstructs a first CT image corresponding to a field of view (FOV) by using a first sinogram acquired by a CT scan of an object; and a correction unit which acquires a second sinogram by performing forward projection on the first CT image and acquires a second CT image by using the second sinogram and a third sinogram representing a portion of the object that is not included in the FOV. Thus, the CT apparatus reduces generation of image errors to thereby provide a high-quality reconstructed CT image.
Abstract:
An image processing method of an image processing apparatus includes projecting centers of pixels of a pixel grid onto a preset common axis, mapping a boundary of a detector cell comprised in the detection unit on the preset common axis, and determining a detector value based on the projecting the centers of the pixels onto the preset common axis and the mapping the boundary of the detector cell on the preset common axis.
Abstract:
Provided are an apparatus and a method for processing a radiograph which is capable of precisely detecting a region of interest. The apparatus includes: an inputter that outputs an input image obtained by irradiating radioactive rays; and a line detector that performs a Hough transform on the input image, senses at least one edge line based on the Hough-transformed input image, performs a Radon transform in a region in which the at least one edge line is sensed, and obtains an edge line of the at least one edge line as a first collimation line one based on a result of the Radon transform.
Abstract:
A method for controlling a medical device is provided including: acquiring identification information of a patient; acquiring patient information and diagnostic information based on the identification information; and changing a state of the medical device based on the patient information and the diagnostic information.