Abstract:
A battery managing apparatus includes a battery controller configured to determine a time when a battery enters a steady state based on a charge and discharge current of the battery. The apparatus further includes a time controller configured to wake up the battery controller based on the time when the battery enters the steady state. The battery controller is configured to control the battery in response to the time controller waking up the battery controller.
Abstract:
A battery control apparatus includes resistors respectively connected to cells in battery modules, a temperature sensor configured to measure a temperature of the resistors, and a controller configured to control balancing performed on the cells based on the measured temperature.
Abstract:
Disclosed are a vehicle control unit (VCU) and an operation method thereof that calculate a speed variation of a vehicle based on input information, predict an average speed of the vehicle based on the calculated speed variation, generate a first speed profile based on the predicted average speed, and generate a second speed profile by applying speed noise information to the first speed profile.
Abstract:
A battery managing apparatus includes a battery controller configured to determine a time when a battery enters a steady state based on a charge and discharge current of the battery. The apparatus further includes a time controller configured to wake up the battery controller based on the time when the battery enters the steady state. The battery controller is configured to control the battery in response to the time controller waking up the battery controller.
Abstract:
A method and apparatus for estimating current is disclosed. The current estimation apparatus may receive a voltage value of a battery pack and voltage values of cells included in the battery pack, and may estimate a current of the battery pack based on the voltage value of the battery pack, the voltage values of the cells included in the battery pack, and resistance components within the battery pack.
Abstract:
A battery charging and discharging apparatus includes power converters connected in series and configured to convert respective output voltages of batteries corresponding to the power converters. Each of the power converters may include direct current to direct current (DC/DC) converters connected in parallel. The apparatus may further include a controller configured to control magnitudes of respective output voltages of the power converters based on respective states of the batteries.
Abstract:
An apparatus for detecting a state of a relay includes a voltage outputter configured to output a voltage having a different voltage value for each state of each of a plurality of relays configured to switch a connection between a battery and a load, and a controller configured to determine whether each of the plurality of relays is welded based on the voltage output from the voltage outputter.
Abstract:
A battery charging and discharging apparatus includes power converters connected in series and configured to convert respective output voltages of batteries corresponding to the power converters. Each of the power converters may include direct current to direct current (DC/DC) converters connected in parallel. The apparatus may further include a controller configured to control magnitudes of respective output voltages of the power converters based on respective states of the batteries.
Abstract:
A battery control apparatus includes a processor configured to define each of output values of converters respectively corresponding to a plurality of batteries based on state information of each of the plurality of batteries, and a signal generator configured to generate control signals to control the converters to supply power corresponding to the output values to a load.
Abstract:
A method and apparatus for measuring a voltage of a battery pack are provided. A battery control apparatus may include a voltage distributor configured to distribute a voltage of a battery pack including battery modules, using distribution elements connected to the battery pack, and a voltage extractor configured to extract a voltage value of the voltage of the battery pack by measuring the distributed voltage.