Device and method for encoding and decoding image using AI

    公开(公告)号:US12170786B2

    公开(公告)日:2024-12-17

    申请号:US18133369

    申请日:2023-04-11

    Abstract: An image decoding method includes obtaining feature data of a current optical flow and feature data of a current residual image from a bitstream; obtaining the current optical flow and first weight data by applying the feature data of the current optical flow to an optical flow decoder; obtaining the current residual image by applying the feature data of the current residual image to a residual decoder; obtaining a preliminary prediction image from the previous reconstructed image, based on the current optical flow; obtaining a final prediction image by applying sample values of the first weight data to sample values of the preliminary prediction image; and obtaining a current reconstructed image corresponding to the current image by combining the final prediction image with the current residual image.

    Methods and apparatuses for performing artificial intelligence encoding and artificial intelligence decoding on image

    公开(公告)号:US11170534B2

    公开(公告)日:2021-11-09

    申请号:US17082848

    申请日:2020-10-28

    Abstract: Provided is an artificial intelligence (AI) decoding apparatus includes: a memory storing one or more instructions; and a processor configured to execute the one or more instructions stored in the memory, the processor is configured to: obtain AI data related to AI down-scaling an original image to a first image; obtain image data corresponding to an encoding result on the first image; obtain a second image corresponding to the first image by performing a decoding on the image data; obtain deep neural network (DNN) setting information among a plurality of DNN setting information from the AI data; and obtain, by an up-scaling DNN, a third image by performing the AI up-scaling on the second image, the up-scaling DNN being configured with the obtained DNN setting information, wherein the plurality of DNN setting information comprises a parameter used in the up-scaling DNN, the parameter being obtained through joint training of the up-scaling DNN and a down-scaling DNN, and wherein the down-scaling DNN is used to obtain the first image from the original image.

Patent Agency Ranking