Abstract:
A unit pixel of a stacked image sensor includes a stacked photoelectric conversion unit, a first and second signal generating units. The stacked photoelectric conversion unit includes first, second and third photoelectric conversion elements that are stacked on each other. The first, second and third photoelectric conversion elements collect first, second and third photocharges based on first, second and third components of incident light. The first signal generating unit generates a first pixel signal based on the first photocharges and a first signal node and generates a second pixel signal based on the second photocharges and the first signal node. The second signal generating unit generates a third pixel signal based on the third photocharges and a second signal node. At least a portion of the second signal generating unit is shared by the first signal generating unit.
Abstract:
An image sensor includes a plurality of row lines extending in a first direction, a plurality of column lines including a plurality of first column lines and a plurality of second column lines, the plurality of column lines intersects the plurality of row lines, and a plurality of pixels arranged along the plurality of row lines and the plurality of column lines, the plurality of pixels includes a plurality of pixel groups, each of the plurality of pixel groups includes two or more pixels. Each pixel includes a first photoelectric element, a second photoelectric element, a first pixel circuit connected to the first photoelectric element, and a second pixel circuit connected to the second photoelectric element. In each pixel group, the first pixel circuits share one of the plurality of first column lines and the second pixel circuits share one of the plurality of second column lines.
Abstract:
An image sensor includes a semiconductor layer, an organic photoelectric conversion portion disposed on an upper surface of the semiconductor layer and that converts a color component of incident light into a corresponding electrical signal, a transistor layer disposed on a lower surface of the semiconductor layer and including a pixel circuit that receives the electrical signal, and penetration wiring that laterally penetrates a side surface of the semiconductor layer between the upper and lower surfaces and that electrically connects the organic photoelectric conversion portion with the pixel circuit to communicate the electrical signal.