Abstract:
An integrated image display, a method for operating the display, and a system including the display are provided. The integrated image display includes: a display panel including pixels; and a first lens array including a plurality of lenses, wherein each of the plurality of lenses is capable of displaying, in a beam direction, a subset of a plurality of subpixels included in at least one pixel from among the included pixels.
Abstract:
A method for reducing a moire fringe includes calculating a moire fringe width for each of different angles between a microlens array and pixels of a display screen. The method includes determining, to be a final inclination angle between the microlens array and the pixels of the display screen, one of the different inclination angles that corresponds to a minimum width among the calculated moire fringe widths.
Abstract:
A method of determining eye position information includes identifying an eye area in a facial image; verifying a two-dimensional (2D) feature in the eye area; and performing a determination operation including, determining a three-dimensional (3D) target model based on the 2D feature; and determining 3D position information based on the 3D target model.
Abstract:
An image processing method and apparatus are provided. The image processing method may include determining whether stereoscopic objects that are included in an image pair and that correspond to each other are aligned on the same horizontal line. The method includes determining whether the image pair includes target objects having different geometric features from those of the stereoscopic objects if the stereoscopic objects are not aligned on the same horizontal line. The method includes performing image processing differently for the stereoscopic objects and for the target objects if the image pair includes the target objects.
Abstract:
A method and apparatus for correcting an image error in a naked-eye three-dimensional (3D) display, the method including controlling a flat-panel display displaying a stripe image, calculating a raster parameter of the naked-eye 3D display based on a captured stripe image, and correcting a stereoscopic image displayed on the naked-eye 3D display based on the calculated raster parameter, wherein the naked-eye 3D display includes the flat-panel display and the raster is disclosed.
Abstract:
An eyeglass-less 3D display device, and a device and method that compensate for a displayed margin of error are provided. The display device acquires an image of an integral image display (IID) image captured by a single camera, and compensates for a margin of error which arises due to a discrepancy between the designed position of a micro lens array located on one surface of a 2D panel and the actual position thereof, so as to provide a high-quality 3D image.
Abstract:
Provided are methods and apparatuses for calibrating a three-dimensional (3D) image in a tiled display including a display panel and a plurality of lens arrays. The method includes capturing a plurality of structured light images displayed on the display panel, calibrating a geometric model of the tiled display based on the plurality of structured light images, generating a ray model based on the calibrated geometric model of the tiled display, and rendering an image based on the ray model.
Abstract:
Provided is an apparatus and method for calibrating a multi-layer three-dimensional (3D) display (MLD) that may control a 3D display including a plurality of display layers to display a first image on one of the plurality of display layers, acquire a second image by capturing the first image, calculate a homography between the display layer and an image capturer based on the first image and the second image, and calculate geometric relations of the display layer with respect to the image capturer based on the calculated homography.