Abstract:
A beam deflector includes a first wavelength selective polarizer configured to convert a polarization state of light in a first wavelength band into a first polarization state, a first liquid crystal deflector including liquid crystal molecules and an optical path change surface to deflect light incident from the first wavelength selective polarizer, and a controller configured to control the first liquid crystal deflector to adjust an angle of the first optical path change surface.
Abstract:
A liquid crystal light deflector includes a first electrode layer including line electrodes, a second electrode layer including a common electrode, and a liquid crystal layer that forms an electrical prism using liquid crystal molecules according to an electric field formed between the first and second electrode layers. The orientations of the liquid crystal molecules may be reset by an electric field formed between line electrodes of adjacent channels within the first electrode layer. A method of deflecting light includes controlling the first electrode layer and the second electrode layer to reset the orientation of the liquid crystal molecules prior to forming an electrical prism in the liquid crystal layer.
Abstract:
A backlight unit for a binocular-holographic display device and a holographic display device including the same are provided. The backlight unit includes a light source unit which outputs light, a first beam expansion unit which expands, in a first direction, the light output from the light source unit, a second beam expansion unit which expands, in a second direction perpendicular to the first direction, the light output from the first beam expansion unit, and a beam deflection unit which diffracts light incident on the first beam expansion unit. The holographic display device includes the backlight unit, a field lens, and a spatial light modulator.
Abstract:
An apparatus for generating an image may include a plurality of scintillator layers configured to convert an incident beam into an optical signal; a plurality of micro cells configured to turn on or off depending on whether or not the micro cells detect the optical signal; a reaction depth determining unit configured to detect a decay pattern of the optical signal, on the basis of on/off signals of the micro cells, and configured to determine a type of the scintillator layers with which the incident beam has reacted; and/or a reading unit configured to decide an occurrence location of the incident beam and then generates a photographed image.
Abstract:
A driver circuit outputs a result of classifying and counting photons based on one or more energy levels to a column line. The driver circuit includes a multiplexer for receiving the result from a counter, a driving inverter for receiving a signal from the multiplexer and a power supply, and a switch connected between the power supply and an input terminal of the driving inverter.
Abstract:
A touch panel includes a sensing unit having a first sub sensing unit configured to output a first sensing current in response to a voltage of a first gate line and configured to reset in response to a voltage of a second gate line the first sensing current corresponding to a first touch type, and a second sub sensing unit configured to output a second sensing current in response to a voltage of a third gate line and configured to reset in response to a voltage of a fourth gate line, the second sensing current corresponding to a second touch type which is different than the first touch type, a display unit configured to generate an image voltage corresponding to image data to be displayed, in response to at least one of the voltages of the first to fourth gate lines and liquid crystal.
Abstract:
A three-dimensional holographic display device includes a light emitting diode (LED) array including a plurality of light sources controlled to sequentially output light according to a preset pattern, a lens configured to refract light incident from the LED array, a spatial light modulator (SLM) configured to modulate light incident from the lens, and a processor configured to generate a plurality of holographic signals each comprising depth information adjusted according to an arrangement location of each of the plurality of light sources, and for each of the plurality of light sources, control the SLM to modulate the light based on a holographic signal corresponding to the light source.
Abstract:
Provided are a light deflector and a light output device including the light deflector, the light deflector including a first electrode layer and a second electrode layer that are spaced apart from each other and facing each other, and a deflection layer configured to deflect incident light thereon based on a voltage applied to the first electrode layer and the second electrode layer, wherein the first electrode layer includes a plurality of electrode elements that are spaced apart from each other, and a resistor that is in contact with at least part of the plurality of electrode elements and in which a voltage drop is generated.
Abstract:
A beam deflector and a holographic three-dimensional image display apparatus employing the same are provided. The beam deflector deflects light through two stages by a first beam deflector that deflects the light in a first moving direction making an angle with a horizontal direction and a vertical direction, such that the deflected light is oriented to a first location, and a second beam deflector that deflects the light incident from the first beam deflector such that the light is deflected in a second moving direction making an angle with the horizontal direction and the vertical direction at the first location and is oriented to a second location.
Abstract:
A beam deflector, a holographic display device including the beam deflector, and a method of driving the beam deflector are provided. The beam deflector includes first electrodes spaced apart from each other on a first substrate, second electrodes spaced apart from each other on a second substrate, a liquid crystal layer between the first substrate and the second substrate, and a controller configured to cause active prisms to be formed in the liquid crystal layer and to form a floating zone by turning off a voltage of at least one of the first electrode and the second electrode disposed between adjacent ones of the active prisms.