Abstract:
Provided are a video encoding method and apparatus having temporal scalability, and a video decoding method and apparatus having temporal scalability. The video encoding method includes: splitting pictures included in a picture sequence into temporal sub-layers; classifying, as a first temporal layer access picture or a second temporal layer access picture, a temporal layer access picture based on whether a picture encoded after the temporal layer access picture is capable of referring to a picture encoded before the temporal layer access picture; and adding, to transmission unit data including the temporal layer access picture, type syntax information for identifying the first temporal layer access picture and the second temporal layer access picture, wherein the picture encoded after the temporal layer access picture belongs to a same temporal sub-layer as the temporal layer access picture or belongs to an upper temporal sub-layer to the temporal layer access picture.
Abstract:
Provided are an inter prediction method and a motion compensation method. The inter prediction method includes: performing inter prediction on a current image by using a long-term reference image stored in a decoded picture buffer; determining residual data and a motion vector of the current image generated via the inter prediction; and determining least significant bit (LSB) information as a long-term reference index indicating the long-term reference image by dividing picture order count (POC) information of the long-term reference image into most significant bit (MSB) information and the LSB information.
Abstract:
Determining a reference picture set (RPS), which is a set of reference pictures used in predictive decoding of a current picture that is to be decoded, including: obtaining a flag indicating whether the RPS is determined based on picture order count (POC) values of the current picture and a previous picture or whether the RPS is determined based on an index of a reference RPS, which is an identification value of the reference RPS that is one of pre-defined RPSs and is referred to in determining the RPS, and a delta RPS that is a difference value between a POC vale of a reference picture included in the reference RPS and a POC value of a reference picture included in the RPS; and determining the RPS according to a value of the flag.
Abstract:
Provided are methods and apparatuses for encoding and decoding an image. The method of encoding includes: determining a maximum size of a buffer to decode each image frame by a decoder, a number of image frames to be reordered, and latency information of an image frame having a largest difference between an encoding order and a display order from among image frames that form an image sequence, based on an encoding order the image frames that form the image sequence, an encoding order of reference frames referred to by the image frames, a display order of the image frames, and a display order of the reference frames; and adding, to a mandatory sequence parameter set, a first syntax indicating the maximum size of the buffer, a second syntax indicating the number of image frames to be reordered, and a third syntax indicating the latency information.
Abstract:
Provided are an inter prediction method and a motion compensation method. The inter prediction method includes: performing inter prediction on a current image by using a long-term reference image stored in a decoded picture buffer; determining residual data and a motion vector of the current image generated via the inter prediction; and determining least significant bit (LSB) information as a long-term reference index indicating the long-term reference image by dividing picture order count (POC) information of the long-term reference image into most significant bit (MSB) information and the LSB information.
Abstract:
A method of determining a reference picture set (RPS), which is a set of reference pictures used in predictive decoding of a current picture that is to be decoded includes: obtaining a flag indicating whether the RPS is determined based on picture order count (POC) values of the current picture and a previous picture or whether the RPS is determined based on an index of a reference RPS, which is an identification value of the reference RPS that is one of pre-defined RPSs and is referred to in determining the RPS, and a delta RPS that is a difference value between a POC vale of a reference picture included in the reference RPS and a POC value of a reference picture included in the RPS; and determining the RPS according to a value of the flag.
Abstract:
Provided are an inter prediction method and a motion compensation method. The inter prediction method includes: performing inter prediction on a current image by using a long-term reference image stored in a decoded picture buffer; determining residual data and a motion vector of the current image generated via the inter prediction; and determining least significant bit (LSB) information as a long-term reference index indicating the long-term reference image by dividing picture order count (POC) information of the long-term reference image into most significant bit (MSB) information and the LSB information.
Abstract:
Provided are an image compressing method including determining a compressed image by performing downsampling using a deep neural network (DNN) on an image; determining a prediction signal by performing prediction based on the compressed image; determining a residual signal based on the compressed image and the prediction signal; and generating a bitstream comprising information about the residual signal, wherein the DNN has a network structure that is predetermined according to training of a downsampling process using information generated in an upsampling process, and an image compressing device for performing the image compressing method. Also, provided are an image reconstructing method of reconstructing a compressed image by using a DNN for upsampling, the compressed image having been compressed by the image compressing method, and an image reconstructing device for performing the image reconstructing method.
Abstract:
An electronic apparatus includes a memory configured to store a predetermined conversion relation, and a processor configured to obtain first luminance information indicating luminance values of respective pixels included in a first image, and obtain first color information indicating color values of the respective pixels, obtain a first cumulative distribution function indicating a relation between a cumulative pixel count and each luminance level based on the first luminance information, obtain a second cumulative distribution function by applying the predetermined conversion relation to the first cumulative distribution function, calculate second luminance information indicating converted luminance values of the respective pixels by using the first cumulative distribution function and the second cumulative distribution function, and generate a second image based on the first color information and the second luminance information.
Abstract:
Provided are methods and apparatuses for encoding and decoding an image. Method of encoding includes: determining a maximum size of a buffer to decode each image frame by a decoder, a number of image frames to be reordered, and latency information of an image frame having a largest difference between an encoding order and a display order from among image frames that form an image sequence, based on an encoding order the image frames that form the image sequence, an encoding order of reference frames referred to by the image frames, a display order of the image frames, and a display order of the reference frames; and adding, to a mandatory sequence parameter set, a first syntax indicating the maximum size of the buffer, a second syntax indicating the number of image frames to be reordered, and a third syntax indicating the latency information.