Abstract:
This disclosure provides systems, methods and apparatus including a light collector having a plurality of micro-lens and a plurality of multi-cone light redirecting structure that is optically coupled to one or more photovoltaic cells. In one aspect, the plurality of micro-lens is provided in an organic glass panel that is attached to an inorganic glass substrate. The inorganic glass substrate includes a material that is substantially opaque to radiation in the ultraviolet spectral range. During use, the light collector is disposed such that the inorganic glass substrate is exposed to the exterior to prevent a portion of the ultraviolet radiation incident on the light collector from being transmitted to the organic glass panel.
Abstract:
This disclosure provides photovoltaic apparatus and methods of forming the same. In one implementation, a method of forming a photovoltaic device includes forming a plurality of substrate features on a surface of a glass substrate, the substrate features having a depth dimension in the range of about 10 μm to about 1000 μm and a width dimension in the range of about 10 μm to about 1000 μm. The method further includes forming a thin film solar cell over the surface of the glass substrate including over the plurality of substrate features.
Abstract:
A new transparent-charge-injection-layer consisting of LiF/Al/Al-doped-SiO has been developed as (i) a cathode for top emitting organic light-emitting diodes (TOLEDs) and as (ii) a buffer layer against damages induced by energetic ions generated during deposition of other functional thin films by sputtering, or plasma-enhanced chemical vapor deposition. A luminance of 1900 cd/m2 and a current efficiency of 4 cd/A have been achieved in a simple testing device structure of ITO/TPD (60 nm)/Alq3 (40 nm)/LiF (0.5 nm)Al (3 nm)/Al-doped-SiO (30 nm). A thickness of 30 nm of Al-doped SiO is also found to protect organic layers from ITO sputtering damage.