摘要:
An air bearing surface of a slider, which achieves low crown sensitivity is described. In one embodiment, the air bearing surface comprises a center channel and a plurality of side channels, wherein at least one side channel of the plurality of side channels is open to the center channel. The center channel and the plurality of side channels are configured to allow air to flow along the center channel toward the trailing edge of the ABS, such that there is low crown sensitivity.
摘要:
An air bearing surface of a slider, which achieves low crown sensitivity is described. In one embodiment, the air bearing surface comprises a center channel and a plurality of side channels, wherein at least one side channel of the plurality of side channels is open to the center channel. The center channel and the plurality of side channels are configured to allow air to flow along the center channel toward the trailing edge of the ABS, such that there is low crown sensitivity.
摘要:
A dual etch depth slider air bearing surface includes a front pad disposed along the front and partially along the sides of the slider and a rear pad partially disposed along the rear of the slider, wherein a skewed center rail connects the front pad to the rear pad. Extending above the rear pad is a V-shaped ABS pad and extending above the front pad are two leading edge ABS pads that are separated by a channel towards the longitudinal center of the slider. The design enables the slider to fly much higher over the landing zone of the disk than at the data zone and provides for a steep take off profile followed by a rapid descend over the data zone.
摘要:
A shallow etch at the trailing edge rail that allows the slider to fly closer to the recording medium and exhibit less sensitivity to roll. The slider includes a support structure and at least one rail having side edges and an air bearing surface raised above the support structure. At least one of the rails comprises a magnetic element disposed on the support structure. The edges of the rail adjacent to the magnetic element are etched to minimize the fly height of the magnetic element over the disk while preventing collision of the rail with the disk during roll conditions. The etched features of the rail create relieved trailing edge portions where the edges of the rail adjacent to the magnetic element are lower than the air bearing surface but are higher than the support structure. The shallow etch in the air bearing surface minimizes the difference between the minimum mechanical slider/disk spacing and the magnetic head/disk spacing which in turn allows optimization of transducer spacing. The edges of the air bearing surface adjacent the magnetic element are shortened by reactive ion etching or ion milling.
摘要:
Air bearing sliders that achieve fly height profiles which allow improved areal density and file capacity. The sliders include angled features in such a way that they align with the air skew at textured zones on a disk. The angled features are selected to create a first air pressure distribution at first predetermined radii of the recording medium and a second air pressure distribution at second predetermined radii of the recording medium. The spacing profile may be obtained by skewing the whole or a portion of one or more rails with respect to the air bearing slider edges. In designs with a center rail, the spacing profile may be customized by skewing the center rail. Further optimization may be provided by altering the taper of the rail widths. Still further, the entire slider can be mounted with a skew with respect to the suspension to achieve the required fly height profile variations rather than skewing one or more of the rails. The exact shape of the profiles are optimized to the file's magnetic and mechanical needs and improve capacity and density in files that have constant texture (or no texture) throughout the whole disk surface.
摘要:
A shallow etch at the trailing edge rail that allows the slider to fly closer to the recording medium and exhibit less sensitivity to roll. The slider includes a support structure and at least one rail having side edges and an air bearing surface raised above the support structure. At least one of the rails comprises a magnetic element disposed on the support structure. The edges of the rail adjacent to the magnetic element are etched to minimize the fly height of the magnetic element over the disk while preventing collision of the rail with the disk during roll conditions. The etched features of the rail create relieved trailing edge portions where the edges of the rail adjacent to the magnetic element are lower than the air bearing surface but are higher than the support structure. The shallow etch in the air bearing surface minimizes the difference between the minimum mechanical slider/disk spacing and the magnetic head/disk spacing which in turn allows optimization of transducer spacing. The edges of the air bearing surface adjacent the magnetic element are shortened by reactive ion etching or ion milling.