Abstract:
A legged robotic device is disclosed. The legged robotic device can include a mechanism formed at least in part by a plurality of support members coupled together for relative movement defining a plurality of degrees of freedom, at least some of the plurality of degrees of freedom corresponding to degrees of freedom of a human leg. The legged robotic device can also include a primary drive actuator operable to apply a force or a torque to the support members in a first of the plurality of degrees of freedom. In addition, the legged robotic device can include a second actuator operable to apply a force or a torque to the support members in a second of the plurality of degrees of freedom. The mechanism can be configured to move in a gait-like motion that emulates human gait. The primary drive actuator can be sufficient to actuate the mechanism to move the mechanism in the gait-like motion. The mechanism can be dynamically modified by actuating the second actuator.
Abstract:
A robotic mobile low-profile transport vehicle is disclosed. The vehicle can comprise a first transport module having a frame assembly, a mobility system, and a propulsion system and a second transport module having a frame assembly and a mobility system. A multi-degree of freedom coupling assemblage can join the first and second transport modules together. The vehicle can include a first platform supported about the frame assembly of the first transport module, and a second platform supported about the frame assembly of the second transport module. Each of the platforms can be configured to receive a load for transport. Additionally, the vehicle can include a control system that can operate to facilitate intra-module communication and coordination to provide a coordinated operating mode of the first and second transport modules and the coupling assemblage about a given terrain.
Abstract:
A robotic mobile low-profile transport vehicle is disclosed. The vehicle can comprise a first transport module having a frame assembly, a mobility system, and a propulsion system and a second transport module having a frame assembly and a mobility system. A multi-degree of freedom coupling assemblage can join the first and second transport modules together. The vehicle can include a first platform supported about the frame assembly of the first transport module, and a second platform supported about the frame assembly of the second transport module. Each of the platforms can be configured to receive a load for transport. Additionally, the vehicle can include a control system that can operate to facilitate intra-module communication and coordination to provide a coordinated operating mode of the first and second transport modules and the coupling assemblage about a given terrain.
Abstract:
A serpentine robotic crawler having multiple dexterous manipulators supported about multiple frame units. The frame units are connected via an articulating linkage at proximal ends wherein the articulating linkage is capable of positioning the frames into various configurations. Dexterous manipulators are coupled to distal ends of the frame units and are positionable via the articulating linkage and articulating joints therein into various positions about the frame ends. The configurations and positioning of the dexterous manipulators allows the robotic crawler to perform coordinated dexterous operations.
Abstract:
The present disclosure relates to a firefighting system. The firefighting system can include first and second fire-suppressing liquid charges. Each fire-suppressing liquid charge can be modified with a flight integrity component to inhibit substantial break-up of the fire-suppressing liquid charge during flight. The first and second fire-suppressing liquid charges can be comprised of contents that, when unmixed, are relatively inert, but that when mixed together possess a functional fire suppressant attribute.
Abstract:
A teleoperated robotic system that includes master control arms, slave arms, and a mobile platform. In use, a user manipulates the master control arms to control movement of the slave arms. The teleoperated robotic system can include two master control arms and two slave arms. The master control arms and the slave arms are mounted on the platform. The platform can provide support for the master control arms and for a teleoperator, or user, of the robotic system. Thus, a mobile platform can allow the robotic system to be moved from place to place to locate the slave arms in a position for use. Additionally, the user can be positioned on the platform, such that the user can see and hear, directly, the slave arms and the workspace in which the slave arms operate.
Abstract:
A rapidly modulated hydraulic supply is disclosed. The rapidly modulated hydraulic supply can include a chamber for receiving fluid. The rapidly modulated hydraulic supply can also include a displacement member operable to displace the fluid from the chamber. In addition, the rapidly modulated hydraulic supply can include a flow modulation system operable to vary the flow rate of the fluid output from the chamber. A first flow rate corresponds to a first output pressure, and is different from a second flow rate corresponding to a second output pressure for a like movement of the displacement member.
Abstract:
A legged robotic device is disclosed. The legged robotic device can include a plurality of support members coupled together for relative movement defining a plurality of degrees of freedom, which can correspond to degrees of freedom of a human leg. The legged robotic device can also include actuators to apply forces or torques to the support members in the degrees of freedom. In addition, the legged robotic device can include potential energy storage mechanisms associated with the degrees of freedom operable to store potential energy as a result of relative movement of the support members in the degrees of freedom and to provide at least a portion of the stored potential energy to the support members as compensating forces or torques to assist the actuators. In one aspect, elastic potential energy can be stored. A spring rate and/or a zero position of the potential energy storage mechanisms can be dynamically variable.
Abstract:
A legged robotic device is disclosed. The legged robotic device can include a plurality of support members coupled together for relative movement defining a plurality of degrees of freedom, which can correspond to degrees of freedom of a human leg. The legged robotic device can also include actuators to apply forces or torques to the support members in the degrees of freedom. In addition, the legged robotic device can include potential energy storage mechanisms associated with the degrees of freedom operable to store potential energy as a result of relative movement of the support members in the degrees of freedom and to provide at least a portion of the stored potential energy to the support members as compensating forces or torques to assist the actuators. In one aspect, elastic potential energy can be stored. A spring rate and/or a zero position of the potential energy storage mechanisms can be dynamically variable.
Abstract:
A rotary actuation mechanism comprising an actuator having a body, and a slider movable on a linear path relative to the body. A first linkage can be pivotally coupled to the body at a first pivot having a first axis. A second linkage can be pivotally coupled to the slider at a second pivot having a second axis, and pivotally coupled to the first linkage at a third pivot. A length of the first linkage between the first pivot and the third pivot can be equal to a length of the second linkage between the second pivot and the third pivot. The slider can be movable to position the second axis in a collinear relationship with the first axis. The rotary actuation mechanism can include an anti-singularity device to constrain movement of the body when the first axis and the second axis are in the collinear relationship.