Abstract:
A communications cable management system includes a support structure and a door assembly. The support structure defines a cable trough and includes at least two first mount structures and at least two second mount structures spaced apart from the at least two first mount structures. The door assembly includes a door body, first and second latch mechanisms, and first and second actuators. The door body has first and second opposed side edges. The first latch mechanism includes at least two first latch structures each selectively positionable between a latched position, wherein the first latch structure engages a respective one of the first mount structures to secure the door body to the support structure for pivotal movement therebetween about a first pivot axis proximate the first side edge of the door body, and an unlatched position, wherein the first latch structure is disengaged from the first mount structure to permit the first side edge of the door to be separated from the support structure. The second latch mechanism includes at least two second latch structures each selectively positionable between a latched position, wherein the second latch structure engages a respective one of the second mount structures to secure the door body to the support structure for pivotal movement therebetween about a second pivot axis proximate the second side edge of the door body, and an unlatched position, wherein the second latch structure is disengaged from the second mount structure to permit the second side edge of the door to be separated from the support structure. The first actuator is operable by a user to selectively move each of the first latch structures as a group from their latched positions to their unlatched positions. The second actuator is operable by a user to selectively move each of the second latch structures as a group from their latched positions to their unlatched positions. When the first and second latch structures are in their latched positions, the door body is secured in a closed position on the support structure. When the first and second latch structures are in their unlatched positions, the door body can be removed from the support structure. When the first latch structures are in their latched positions and the second latch structures are in their unlatched positions, the door body can be pivoted open about the first pivot axis. When the second latch structures are in their latched positions and the first latch structures are in their unlatched positions, the door body can be pivoted open about the second pivot axis.
Abstract:
An insulation displacement contact (IDC) includes: upper and lower ends, each of the upper and lower ends including a slot configured to receive a conductor therein, the slots being generally parallel and non-collinear; and a transitional area merging with the upper and lower ends. An IDC of this configuration can be employed, for example, in 110-style connectors, and can enable such connectors to compensate for differential to common mode crosstalk between adjacent IDC pairs.
Abstract:
A modular shelf system for use with an equipment support structure to manage cables has opposed front and rear sides. The shelf system includes a base member adapted to be secured to the equipment support structure and first and second drawers mounted on the base member in side-by-side relation. Each of the first and second drawers is adapted to receive at least one cable from the rear side of the shelf system. Each of the first and second drawers includes a front panel located adjacent the front side of the shelf system and defines a cable port. Each of the first and second drawers is slidable between a first, stored position within the base member and an open position wherein the respective drawer is disposed forwardly of and at least partially withdrawn from the base member to provide access from the front side of the shelf system to a cable or cables introduced into the respective drawer from the rear side of the shelf system.