Abstract:
Physical subsector error marking allows for selectively marking subsectors of a physical sector of a storage medium as unreadable. The error marking may include a bad sector mask to indicate that the subsector is unreadable combined with an error signature to confirm that the bad sector mask was set intentionally. The remaining readable subsectors of the physical sector may be returned to the host.
Abstract:
Physical subsector error marking allows for selectively marking subsectors of a physical sector of a storage medium as unreadable. The error marking may include a bad sector mask to indicate that the subsector is unreadable combined with an error signature to confirm that the bad sector mask was set intentionally. The remaining readable subsectors of the physical sector may be returned to the host.
Abstract:
An imminent state reset of a data storage device is detected. In response to determining volatile data of the data storage device could be lost in response to the state reset, the volatile data of the data storage device is stored to a backup memory of the data storage device together with first header data that facilitates recovering the volatile data. The backup memory includes non-volatile, solid-state memory. In response to determining the volatile data would not be lost in response to the state reset, second header data is stored in the backup memory. After the state reset, a recovery of the volatile data from in the backup memory is attempted if the first header data is detected, or a host device is alerted if neither the first header data or second header data is detected.
Abstract:
A data storage system includes data storage and random access memory. A sorting module is communicatively coupled to the random access memory and sorts data blocks of write data received in the random access memory of the data storage. A storage controller is communicatively coupled to the random access memory and the data storage and being configured to write the sorted data blocks into one or more individually-sorted granules in a granule storage area of the data storage, wherein each granule is dynamically constrained to a subset of logical block addresses. A method and processor-implemented process provide for sorting data blocks of write data received in random access memory of data storage. The method and processor-implemented process write the sorted data blocks into one or more individually-sorted granules in a granule storage area of the data storage, wherein each granule is dynamically constrained to a subset of logical block addresses.