Abstract:
Devices that have an air bearing surface (ABS), the device includes a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein the disc includes a disc material that includes gold or an alloy thereof and the peg includes a peg material, wherein the disc material is different from the peg material and wherein the peg material has a real part of the permittivity that is not greater than that of gold.
Abstract:
Devices having an air bearing surfaces (ABS), the devices including a near field transducer (NFT) that includes a disc having a front edge; a peg, the peg having a front surface at the air bearing surface of the apparatus, an opposing back surface, a top surface that extends from the front surface to the back surface, two side surfaces that expend from the front surface to the back surface and a bottom surface that extends from the front surface to the back surface; and a barrier layer, the barrier layer separating at least the back surface of the peg from the disc and the barrier layer having a thickness from 10 nm to 50 nm.
Abstract:
Devices having air bearing surfaces (ABS), the devices include a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein the disc includes a disc material and the peg includes a peg material, wherein the disc material is different from the peg material and wherein the disc material has a first real part of the permittivity and a peg material has a second real part of the permittivity and the second real part of the permittivity is not greater than the first real part of the permittivity.
Abstract:
Devices having an air bearing surface (ABS), the devices including a write pole; a near field transducer (NFT) that includes a peg and a disc, wherein the peg is at the ABS of the device; a heat sink positioned adjacent the disc of the NFT; a dielectric gap positioned adjacent the peg of the NFT at the ABS of the device; and a conformal diffusion barrier layer positioned between the write pole and the dielectric gap, the disc, and the heat sink, wherein the conformal diffusion barrier layer forms at least one angle that is not greater than 135°.
Abstract:
Devices that have an air bearing surface (ABS), the device includes a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein the disc includes a disc material that includes gold or an alloy thereof and the peg includes a peg material, wherein the disc material is different from the peg material and wherein the peg material has a real part of the permittivity that is not greater than that of gold.
Abstract:
Devices having an air bearing surface (ABS), the devices including a write pole; a near field transducer (NFT) that includes a peg and a disc, wherein the peg is at the ABS of the device; a heat sink positioned adjacent the disc of the NFT; a dielectric gap positioned adjacent the peg of the NFT at the ABS of the device; and a conformal diffusion barrier layer positioned between the write pole and the dielectric gap, the disc, and the heat sink, wherein the conformal diffusion barrier layer forms at least one angle that is not greater than 135°.
Abstract:
A near-field transducer includes first and second stacked base portions having a common outline shape. The second base portion is proximate alight delivery structure. A peg extends from the first base portion towards a media-facing surface. The peg includes a material that is more thermally robust than a plasmonic material of the base portion. The peg has a peg thickness that is less than a thickness of the first base portion. The first base portion has a first recess proximate the peg. The first recess separates the first base portion from the media-facing surface and exposes at least a top side of the peg.
Abstract:
Heat assisted magnetic recording (HAMR) devices that includes a near field transducer, the near field transducer including alloys of a first element selected from: platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os); and a second element selected from; hafnium (Hf), niobium (Nb), tantalum (Ta), titanium (Ti), vanadium (V), and zirconium (Zr).
Abstract:
Devices that have an air bearing surface (ABS), the device includes a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein the disc includes a disc material that includes gold or an alloy thereof and the peg includes a peg material, wherein the disc material is different from the peg material and wherein the peg material has a real part of the permittivity that is not greater than that of gold.
Abstract:
Devices having an air bearing surface (ABS), the devices including a write pole; a near field transducer (NFT) that includes a peg and a disc, wherein the peg is at the ABS of the device; a heat sink positioned adjacent the disc of the NFT; a dielectric gap positioned adjacent the peg of the NFT at the ABS of the device; and a conformal diffusion barrier layer positioned between the write pole and the dielectric gap, the disc, and the heat sink, wherein the conformal diffusion barrier layer forms at least one angle that is not greater than 135°.