Abstract:
An apparatus includes a detector and a light source configured to emit light. The apparatus further includes a disk with a set of prisms and that is configured to rotate, arranged to receive and direct the emitted light, and arranged to receive and direct backscattered light. The apparatus further includes a reflecting apparatus with multiple reflective facets and configured to rotate, arranged to reflect the emitted light, and arranged to reflect the backscattered light. A focusing apparatus is arranged to focus the backscattered light from the disk towards the detector.
Abstract:
An optical isolator has a first optical property with respect to transmitted components of the light traveling towards a target and a second optical property with respect to reflected components of the light traveling towards the laser. The second optical property suppresses the reflected components of the light. The optical isolator can be used in applications such as heat-assisted magnetic recording and LIDAR.
Abstract:
A method of lapping multiple row bars provided in a stack, including the steps of electrically connecting at least one row bar bond pad of a first row bar to at least one carrier bond pad of a carrier, electrically connecting an outermost row bar of the stack to the first row bar of the stack by at least one electrical trace, wherein the outermost row bar comprises at least one electronic lapping guide, lapping an outer surface of the outermost row bar until a signal provided by the at least one electronic lapping guide of the outermost row bar reaches a predetermined value, terminating the lapping of the outermost row bar, and removing the outermost row bar from the stack to expose a second row bar, wherein the second row bar is electrically connected to the first row bar with the at least one electrical trace.
Abstract:
An apparatus is includes a near field transducer positioned adjacent a media-facing surface and at the end of a waveguide having at least one core layer and a cladding layer. The apparatus also includes at least one optical reflector positioned adjacent opposing cross-track edges of the near field transducer and/or adjacent a down-track side of the near-field transducer.
Abstract:
A light source is configured to produce light, a waveguide is optically coupled to the light source and configured to direct the light to an intended focus location, and a slider is configured to use the light as an energy source for heating a region of a magnetic recording medium. A thermal sensor is situated on the slider at a location outside of a light path that includes the intended focus location. The thermal sensor is configured for sensing a short time constant change in temperature resulting from light source heating of the thermal sensor, wherein the sensed change in thermal sensor temperature is representative of optical intensity of the light delivered to the intended focus location.
Abstract:
Systems, devices, and methods may use input/output (I/O) apparatus and an optical switching medium to switch, or route, optical data signals. The optical switching medium may include a plurality of optical switching regions. The I/O apparatus may transmit optical data signals to and receive optical data signals from the optical switching medium to provide switching functionality.
Abstract:
An apparatus includes a detector and a light source configured to emit light. The apparatus further includes a disk with a set of prisms and that is configured to rotate, arranged to receive and direct the emitted light, and arranged to receive and direct backscattered light. The apparatus further includes a reflecting apparatus with multiple reflective facets and configured to rotate, arranged to reflect the emitted light, and arranged to reflect the backscattered light. A focusing apparatus is arranged to focus the backscattered light from the disk towards the detector.
Abstract:
A device includes a light splitter configured to receive a source light beam from a light source and split the source light beam into separate light beams, each emitted through an outlet. The device also includes resonators, each of which is optically coupled to at least one of the outlets and is configured to steer at least one of the light beams.
Abstract:
An apparatus includes a detector and a light source configured to emit light. The apparatus further includes a disk with a set of prisms and that is configured to rotate, arranged to receive and direct the emitted light, and arranged to receive and direct backscattered light. The apparatus further includes a reflecting apparatus with multiple reflective facets and configured to rotate, arranged to reflect the emitted light, and arranged to reflect the backscattered light. A focusing apparatus is arranged to focus the backscattered light from the disk towards the detector.
Abstract:
An apparatus comprises a slider having an air bearing surface (ABS) and a near-field transducer (NFT) at or near the ABS. An optical waveguide is configured to couple light from a laser source to the NFT. A resistive sensor comprises an ABS section situated at or proximate the ABS and a distal section extending away from the ABS to a location at least lateral of or behind the NFT. The resistive sensor is configured to detect changes in output optical power of the laser source and contact between the slider and a magnetic recording medium.