Abstract:
A near-field transducer includes an enlarged region having a top side adjacent to a magnetic pole, a base side opposite the top side, and a circumference that extends from proximal to a media-facing surface to distal to a media-facing surface. The near-field transducer includes a peg region in contact with a region of the bas side of the enlarged region, the peg region extending from the enlarged region towards the media-facing surface. The near-field transducer also includes a heat sink region having a contact side, a base side, and a circumference that extends from proximal to the media-facing surface to distal from the media-facing surface. The contact side of the heat sink region is in thermal contact with both the peg region and at least a region of the base side of the enlarged region.
Abstract:
A write head includes a near-field transducer near a media-facing surface of the write head. The write head includes a waveguide having a core with a first side disposed proximate to the near-field transducer. The core overlaps the near-field transducer at a substrate-parallel plane. The core includes one of a step or a taper on a second side facing away from the first side. The step or the taper causes a reduced thickness of the core normal to the substrate-parallel plane. The write head includes a cladding layer that encompassing the second side of the core and that fills in the step or the taper.
Abstract:
An apparatus comprises a writer, a near-field transducer (NFT), a channel waveguide proximate the NFT, a dielectric layer between the NFT and waveguide, and a plurality of heat sinks. A first heat sink comprises a gap and contacts the NFT and the writer. A second heat sink extends across the gap of the first heat sink and between the NFT and a heat reservoir component, such as a return pole of the writer. The channel waveguide may contact the second heat sink, such as by encompassing a peripheral portion of the second heat sink. The second heat sink may have at least an outer surface comprising a plasmonic material, and may be configured to enhance plasmonic excitation of the NFT.
Abstract:
A write head includes a near-field transducer near a media-facing surface of the write head and a waveguide. The waveguide includes a core that overlaps or is co-planer with the near-field transducer at a first region. The core has a second region extending away from the near-field transducer to an energy source. The core has a third region between the first and second regions. The third region has a third crosstrack width that is less than first and second crosstrack widths of the first and second regions
Abstract:
The embodiments disclose a plasmonic cladding structure including at least one conformal plasmonic cladding structure wrapped around plural stack features of a recording device, wherein the conformal plasmonic cladding structure is configured to create a near-field transducer in close proximity to a recording head of the recording device, at least one conformal plasmonic cladding structure with substantially removed top surfaces of the stack features with exposed magnetic layer materials and a thermally insulating filler configured to be located between the stack features.
Abstract:
An apparatus is provided that includes a waveguide adjacent an air bearing surface, a near-field transducer comprising a peg having a side orthogonal to the air bearing surface and a write pole adjacent to the waveguide. The write pole includes a first portion extending towards the air bearing surface at a non-orthogonal angle with respect to the air bearing surface, and a second portion in contact with the first portion comprising a side that extends towards and orthogonally contacts the air bearing surface. The second portion or the write pole defines a gap between the side of the peg orthogonal to the air bearing surface and the side of the second portion of the write pole that extends towards and orthogonally contacts the air bearing surface. A method of making a magnetic recording head that includes the provided apparatus is also disclosed.
Abstract:
An apparatus is provided that includes a waveguide adjacent an air bearing surface, a near-field transducer comprising a peg having a side orthogonal to the air bearing surface and a write pole adjacent to the waveguide. The write pole includes a first portion extending towards the air bearing surface at a non-orthogonal angle with respect to the air bearing surface, and a second portion in contact with the first portion comprising a side that extends towards and orthogonally contacts the air bearing surface. The second portion or the write pole defines a gap between the side of the peg orthogonal to the air bearing surface and the side of the second portion of the write pole that extends towards and orthogonally contacts the air bearing surface. A method of making a magnetic recording head that includes the provided apparatus is also disclosed.
Abstract:
An apparatus is includes a near field transducer positioned adjacent a media-facing surface and at the end of a waveguide having at least one core layer and a cladding layer. The apparatus also includes at least one optical reflector positioned adjacent opposing cross-track edges of the near field transducer and/or adjacent a down-track side of the near-field transducer.
Abstract:
A magnetoresistive memory element is provided with a read module having a first pinned layer with a magnetoresistance that is readable by a read current received from an external circuit. A write module has a nanocontact that receives a write current from the external circuit and, in turn, imparts a spin torque to a free layer that functions as a shared storage layer for both the read module and the write module.
Abstract:
An apparatus includes a write head comprising a near-field transducer at a media-facing surface of the write head and a waveguide extending along a light-propagation direction. The waveguide is configured to receive light emitted from a light source at a fundamental transverse electric mode. The waveguide is configured to deliver the light to the near-field transducer at a transverse magnetic mode which directs surface plasmons to a recording medium in response thereto. The waveguide comprises a core with first and second tapers separated by a straight portion of constant cross sectional width. The first and second tapers successively decrease a cross-sectional width of the core as it nears the near-field transducer. The waveguide includes an end portion between the second taper and the near field transducer. The end portion comprises a top cladding layer, aside cladding layer, and a bottom cladding layer on the side cladding layer.