Abstract:
A smoothing circuit smoothes lookup tables generated by a color conversion table generator, using a filter function selected from a filter function storage circuit, and supplies smoothed lookup tables to a color processing circuit. Density data supplied from a calibration circuit are converted into halftone dot % data according to the smoothed lookup tables. The halftone dot % data are interpolated and then converted into LD control data, which are supplied to laser diodes.
Abstract:
Hue, lightness, and saturation signals are obtained from an input signal, and hue direction intensity signals with respect to respective unit colors are determined using color corrective intensity functions for respective hues which have been established based on measured values. These hue direction intensity signals are multiplied into corrected intensity signals with respect to the respective colors, which are multiplied by desired correction coefficients. Resulting product signals for the respective unit colors are added into corrected signals with respect to given color signals.
Abstract:
A basic gradation curve, a gray balance, and a black curve are selected, and a tone reproduction curve is generated based on a combination of the basic gradation curve, the gray balance, and the black curve which have been selected. Using the generated tone reproduction curve, a sample image is color-separated to generate a proof. The proof is checked, and, if necessary, the tone reproduction curve is corrected until an optimum tone reproduction curve is generated.
Abstract:
To produce a correction table to be referred to when a quantum level data (QL data) as an input image data to a given image output device is converted into an image having a halftone dot percentage, reference QL data having a plurality of data values arranged at predetermined data intervals are inputted to the image output device; the halftone dot percentage of an output image from the image output device are measured; an approximation formula of a desired function form is determined to approximate the measured halftone dot percentage by the method of least squares, on the condition that the formula should go through preset starting and ending points; and the correction table is produced based on the resulted approximation formula.
Abstract:
An apparatus for processing an image data digitally comprises a storage device for storing therein a multiplier varying in accordance with a first image data obtained by digitally processing the image data, the length of the integral part of the first image data being n bits, a random number generating circuit for generating a random number falling on somewhere between zero and a positive number less than unity, an arithmetic circuit for performing arithmetic operations including a multiplication of the random number by the multiplier, and an adding circuit for adding the output of the arithmetic circuit to the first image data and outputting the least significant m bits (m.ltoreq.n) of the integral part of the so-added data as second image data for use in the next process.
Abstract:
Disclosed herein is an image processing apparatus for determining the rate of UCR (under color removal) for each color by a function of each of color signals. The image processing apparatus basically comprises a device for determining the maximum value Max and the minimum value Min of each of input signals Yi, Mi and Ci, and a device for determining the rates of UCR indicative of Y.sub.U, M.sub.U and C.sub.U from the input signals Yi, Mi, Ci and the maximum value Max and the minimum value Min, using respective functions F.sub.Y, F.sub.M and F.sub.C. The above-described Y.sub.U, M.sub.U and C.sub.U can be determined in accordance with the following equations:Y.sub.U =F.sub.Y (Max, Min, Yi)M.sub.U =F.sub.M (Max, Min, Mi)C.sub.U =F.sub.C (Max, Min, Ci).
Abstract:
This invention is a method for forming halftone screen to prepare a multi-color separated halftone gradation image which is printable and reproducible by superposing an image signal obtained by scanning an original comprising continuous-tone color images with a halftone screen signal generated electrically, which comprises the steps of exposing and scanning a light spot of a predetermined size at a predetermined pitch to form halftone dots, and changing the number of said pitch so as to obtain an arbitrary screen line number. Further, this invention relates to a light beam scanning apparatus for forming halftone screen to prepare a multi-color separated halftone gradation image which is printable and reproducible by superposing an image signal obtained by scanning an original comprising continuous-tone color images with a halftone screen signal generated electrically, which comprises a first laser diode for emitting a synchronizing laser beam, a second laser diode for emitting a recording laser beam, a galvanometer for inputting the synchronizing laser beam and the recording laser beam through a collimator and a mirror, a synchronizing signal generator and an image recording section for inputting laser beams reflected and deflected by said galvanometer, a PLL multiplier for outputting a synchronizing signal by inputting an electric signal from said synchronizing signal generator, and an output controlling section for driving the second laser diode in accordance with the image signal and the synchronizing signal.
Abstract:
An image processing method in a color scanner which includes an original base adapted to receive therein an original cassette that accomodate a color original, a light source for linearly radiating the original cassette as received in the original base, image sensors for color separating a transmitting or reflected light in a linear region of the color original into R, G and B for detection, a signal processing section for processing RGB image signals outputted from the image sensors by linearly scanning the color original to output four color image data such as C, M, Y and black, a color monitor connected to the signal processing section for displaying images of the four color image data, a data input device for inputting data required for the signal processing section and for designating a position where the color monitor displays and an output device for half-toning the four color image data to prepare a printing color separating block, which comprises the steps of: preparing a density cumulated histogram of the color original by using the RGB image signals, obtaining highlight point candidates and shadow point candidates of the color original due to the density cumulated histogram, displaying the highlight point candidates and the shadow point candidates on the image displayed on the color monitor, designating a highlight point and a shadow point by using the data input device, and setting condition data for the signal processing section in accordance with image data of the designated highlight point and shadow point.