摘要:
To increase the amount of lithium ions that can be received in and released from a positive electrode active material to achieve high capacity and high energy density of a secondary battery. A lithium manganese oxide particle includes a first region and a second region. The valence number of manganese in the first region is lower than the valence number of manganese in the second region. The lithium manganese oxide has high structural stability and high capacity characteristics.
摘要:
To increase the amount of lithium ions that can be received and released in and from a positive electrode active material to achieve high capacity and high energy density of a secondary battery. A composite material of crystallites of LiMn2O4 (crystallites with a spinel crystal structure) and crystallites of Li2MnO3 (crystallites with a layered rock-salt crystal structure) is used as a positive electrode active material. The lithium manganese oxide composite has high structural stability and high capacity.
摘要:
A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
摘要:
To increase capacity per weight of a power storage device, a particle includes a first region, a second region in contact with at least part of a surface of the first region and located on the outside of the first region, and a third region in contact with at least part of a surface of the second region and located on the outside of the second region. The first and the second regions contain lithium and oxygen. At least one of the first region and the second region contains manganese. At least one of the first and the second regions contains an element M. The first region contains a first crystal having a layered rock-salt structure. The second region contains a second crystal having a layered rock-salt structure. An orientation of the first crystal is different from an orientation of the second crystal.
摘要:
A novel electrode is provided. A novel power storage device is provided. A conductor having a sheet-like shape is provided. The conductor has a thickness of greater than or equal to 800 nm and less than or equal to 20 μm. The area of the conductor is greater than or equal to 25 mm2 and less than or equal to 10 m2. The conductor includes carbon and oxygen. The conductor includes carbon at a concentration of higher than 80 atomic % and oxygen at a concentration of higher than or equal to 2 atomic % and lower than or equal to 20 atomic %.
摘要:
A positive electrode active material particle with little deterioration is provided. A power storage device with little deterioration is provided. A highly safe power storage device is provided. The positive electrode active material particle includes a first crystal grain, a second crystal grain; and a crystal grain boundary positioned between the crystal grain and the second crystal grain; the first crystal grain and the second crystal grain include lithium, a transition metal, and oxygen; the crystal grain boundary includes magnesium and oxygen; and the positive electrode active material particle includes a region where the ratio of the atomic concentration of magnesium in the crystal grain boundary to the atomic concentration of the transition metal in first crystal grain and the second crystal grain is greater than or equal to 0.010 and less than or equal to 0.50.
摘要:
A novel electrode is provided. A novel power storage device is provided. A conductor having a sheet-like shape is provided. The conductor has a thickness of greater than or equal to 800 nm and less than or equal to 20 μm. The area of the conductor is greater than or equal to 25 mm2 and less than or equal to 10 m2. The conductor includes carbon and oxygen. The conductor includes carbon at a concentration of higher than 80 atomic % and oxygen at a concentration of higher than or equal to 2 atomic % and lower than or equal to 20 atomic %.
摘要:
A lithium-ion secondary battery with high capacity is provided. Alternatively, a lithium-ion secondary battery with unproved cycle characteristics is provided. To achieve this, an active material including a particle having a cleavage plane and a layer containing carbon covering at least part of the cleavage plane is provided. The particle having the cleavage plane contains lithium, manganese, nickel, and oxygen. The layer containing carbon preferably contains graphene. When a lithium-ion secondary battery is fabricated using an electrode including the particle having the cleavage plane at least part of which is covered with the layer containing carbon as an active material, the discharge capacity can be increased and the cycle characteristics can be improved.
摘要:
An object is to provide a highly reliable transistor and a semiconductor device including the transistor. A semiconductor device including a gate electrode; a gate insulating film over the gate electrode; an oxide semiconductor film over the gate insulating film; and a source electrode and a drain electrode over the oxide semiconductor film, in which activation energy of the oxide semiconductor film obtained from temperature dependence of a current (on-state current) flowing between the source electrode and the drain electrode when a voltage greater than or equal to a threshold voltage is applied to the gate electrode is greater than or equal to 0 meV and less than or equal to 25 meV, is provided.
摘要:
A novel electrode is provided. A novel power storage device is provided. A conductor having a sheet-like shape is provided. The conductor has a thickness of greater than or equal to 800 nm and less than or equal to 20 μm. The area of the conductor is greater than or equal to 25 mm2 and less than or equal to 10 m2. The conductor includes carbon and oxygen. The conductor includes carbon at a concentration of higher than 80 atomic % and oxygen at a concentration of higher than or equal to 2 atomic % and lower than or equal to 20 atomic %.