Abstract:
A system for controlling steering of a vehicle, including a steering unit having an electric motor which steers driven wheels of the vehicle, a first steering control unit (EPS ECU 76) for controlling the actuator, a CCD camera for detecting a condition of a lane on a road on which the vehicle travels, a steering assist torque determining unit for determining a steering assist torque necessary for holding a positional relationship between the vehicle and the lane condition, a torque sensor for detecting a steering torque manually applied to the steering unit by the driver, second steering control unit for calculating a torque command to be output to the first steering control unit based on the steering assist torque calculated by the steering assist torque calculating unit and the detected steering torque to control the motor such that the torque command decreases. In the system, a failure detecting unit is provided for detecting whether a failure has occurred at least in determination of the steering assist torque, and the control by the second control unit is discontinued, or is switched to the control by the first control unit when the failure is detected, thereby enabling to detect or discriminate the occurrence of failure with accuracy and to take a necessary countermeasure to cope with the failures condition.
Abstract:
Disclosed is an automatic travelling apparatus which is capable of taking an image of an area ahead of a vehicle by an image pick-up means attached to the vehicle; sampling and processing the image data to extract therefrom continuous line segments; determining a permissible travelling area ahead of the vehicle on the basis of the continuous line segments extracted; setting a target course in the permissible travelling area thus determined; detecting the instantaneous running condition of the vehicle; estimating, on the basis of the instantaneous running condition, a steering amount to permit the vehicle to follow the target course; and steering the vehicle with reference to the steering amount, and furthermore of renewing, on the basis of the instantaneous running condition during a period of image sampling, the preceding position of the vehicle in the permissible travelling area and reset a target course in the permissible travelling area in relation to the renewed position.
Abstract:
Whether a driver is driving intentionally is determined rapidly and accurately when steering control is performed such that a vehicle travels along recognized travel partitioning lines. A torque value deviation absolute value is calculated using the absolute value of a difference between the torque value from the previous processing and the torque value from the current processing, and is stored in a ring buffer. A torque value deviation sum value is calculated by adding all the torque value deviation absolute values stored in the ring buffer, and when a state in which the torque value deviation sum value is equal to or less than a predetermined driving intention determination threshold continues for a predetermined first threshold time (for example, several seconds; e.g. 5 seconds) or longer, it is determined that there is a decrease in the driving intention.
Abstract:
A vehicle steering control system for conducting a steering assistance control in which a basic steering assist torque is determined based on a structural parameter relating to the lane structure such as its curvature. In parallel, corrective steering assist torques are determined based on positional parameters of the vehicle relating to the lane such as a lateral deviation from the lane center line and a vehicle heading angle, and are added to the basic steering assist torque to correct the same. Since the positional parameters are determined based on the image information at or close to the vehicle, this enables to determine the steering assist torque adequately, thereby enhancing the accuracy of the steering assistance control.
Abstract:
A system for controlling steering of a vehicle, including a steering device such as a steering wheel with an electric motor which assists steering of driven wheels of the vehicle, first steering control unit for controlling the motor, a CCD camera for detecting a lane condition of a road on which the vehicle travels, a yaw rate sensor for detecting motion of the vehicle, steering assist torque calculating unit for calculating a steering assist torque necessary for holding the lane, a torque sensor for detecting an actual steering torque manually applied to the steering device by the driver, and second steering control unit for calculating a torque command to be output to the first steering control unit based on the steering assist torque calculated by the steering assist torque calculating unit and the detected steering torque to control the actuator such that the torque command decreases. In the system, a switching device is provided for switching between modes of control by the first steering control unit and the second steering control unit gradually with respect to time, thereby ensuring to switch the mode of control smoothly and preventing the occurrence of disadvantages including that the vehicle driver experiences annoyance upon sensing a change in steering assist.
Abstract:
In a steering angle correcting system, a steering amount required to maintain a positional relationship of a subject vehicle to a road lane ahead of the subject vehicle is calculated in a steering amount calculating device based on outputs from a first detecting device for detecting the state of a lane of a road ahead of the vehicle or which the vehicle is traveling, and a second detecting device for detecting a current positional relationship of the subject vehicle to the road lane. A steering device is driven by a driving device mounted between a grasping portion of a steering wheel and the steering device so as to decrease the difference between a steering amount detected by a steering amount detecting device and a steering amount calculated in the steering amount calculating device. Whenever a driver's intention and the determination by the system are different from each other, a driver can operate the steering wheel to intervene in the steering. In addition, the driver can immediately intervene in the steering at all times, while normally maintaining a cooperating relationship with the system. Thus, the steering angle correcting system has a semi-automatic steering concept.
Abstract:
An automatic travelling apparatus which is capable of finding out a permissible travelling area from images taken by an image pick-up device to set a target course in the permissible travelling area; determining a steering amount appropriate for the purpose of permitting the vehicle to put itself on the target course, in consideration of the instantaneous travelling condition of the vehicle; and performing the exact steering control in terms of the steering amount. The exact travelling attained by the automatic travelling apparatus according to the present invention is attributable to a two-step determination in which first, a target course is set in a permissible area, and a tentative course is set appropriate for the purpose of permitting the vehicle to put itself on the target course.
Abstract:
The method of the present invention improves the damping property of the yaw motion of the vehicle by feeding back a detected yaw rate value in a dynamic sense for compensating the front wheel steer angle so as to increase the damping coefficient of the yaw motion of the vehicle. By controlling the front wheel steer angle by accounting for not only the proportional term of the steering wheel input angle but also the derivative term which is proportional to the steering wheel input angular speed, in the feed-forward control of the front wheel steer angle in relation with the steering operation by the driver, and by appropriately varying the control parameters of the yaw rate feed-back and the steering wheel input feed-forward, the yaw response of the vehicle can be made proportional to the steering wheel input, and the response delay in the yaw rate against the steering wheel input can be reduced to substantially zero.