-
公开(公告)号:US10415373B2
公开(公告)日:2019-09-17
申请号:US15122038
申请日:2015-03-02
Applicant: Silixa Ltd.
Inventor: Andrew Clarke , Daniel Finfer , Veronique Mahue , Tom Parker , Mahmoud Farhadiroushan
Abstract: In order to address the above noted problems, embodiments of the present invention use distributed acoustic sensing to monitor the fluid level in an ESP activated well so as to monitor the condition and performance of the ESP. Embodiments of the invention use the ESP as an acoustic source in order to monitor the annulus fluid level within the well and to monitor the frequency of the ESP. Additionally, embodiments of the present invention may use distributed acoustic sensing to monitor the flow rates of the production fluid above and below the ESP to determine the pump's efficiency. In particular, some embodiments utilize one or more optical fibers to measure the acoustic waves generated by the ESP, wherein the fiber cabling has already been deployed along the length of the well. As such, the present invention is a non-invasive, in-situ method for monitoring the condition and performance of an ESP.
-
公开(公告)号:US20180245957A1
公开(公告)日:2018-08-30
申请号:US15962196
申请日:2018-04-25
Applicant: SILIXA LTD. , CHEVRON USA INC.
Inventor: Mahmoud Farhadiroushan , Daniel Finfer , Veronique Mahue , Tom Parker , Sergey Shatalin , Dmitry Strusevich
Abstract: Embodiments of the present invention provide a cable for optical fiber sensing applications formed from fiber wound around a cable core. A protective layer is then preferably placed over the top of the wound fiber, to protect the fiber, and to help keep it in place on the cable core. The cable core is preferably of a diameter to allow bend-insensitive fiber to be wound thereon with low bending losses. The effect of winding the fiber onto the cable core means that the longitudinal sensing resolution of the resulting cable is higher than simple straight fiber, when the cable is used with an optical fiber sensing system such as a DAS or DTS system. The achieved resolution for the resulting cable is a function of the fiber winding diameter and pitch, with a larger diameter and reduced winding pitch giving a higher longitudinal sensing resolution.
-
公开(公告)号:US10677642B2
公开(公告)日:2020-06-09
申请号:US15507111
申请日:2015-08-20
Applicant: Silixa Ltd.
Inventor: Mahmoud Farhadiroushan , Veronique Mahue , Tom Parker , Sergey Shatalin
Abstract: A prefabricated mat-like structure having lengths of fiber mounted thereon or therein in a predetermined deployment pattern that provides a high spatial density of fiber to give increased spatial sensing resolution is described. The prefabricated mat-like structures may be very easily deployed by being placed against and/or wrapped around an object to be monitored, typically being fastened in place by clamps or the like. In addition, easy removal from the object is also obtained, by simply unfastening the mat-like structure, which may then be redeployed elsewhere. The prefabricated mat-like structure having the fiber already mounted thereon or therein therefore provides a very convenient and easily installable and removable solution.
-
公开(公告)号:US20170248462A1
公开(公告)日:2017-08-31
申请号:US15507111
申请日:2015-08-20
Applicant: Silixa Ltd.
Inventor: Mahmoud Farhadiroushan , Veronique Mahue , Tom Parker , Sergey Shatalin
IPC: G01H9/00
Abstract: A prefabricated mat-like structure having lengths of fiber mounted thereon or therein in a predetermined deployment pattern that provides a high spatial density of fiber to give increased spatial sensing resolution is described. The prefabricated mat-like structures may be very easily deployed by being placed against and/or wrapped around an object to be monitored, typically being fastened in place by clamps or the like. In addition, easy removal from the object is also obtained, by simply unfastening the mat-like structure, which may then be redeployed elsewhere. The prefabricated mat-like structure having the fiber already mounted thereon or therein therefore provides a very convenient and easily installable and removable solution
-
公开(公告)号:US20160258795A1
公开(公告)日:2016-09-08
申请号:US15029480
申请日:2014-10-15
Applicant: SILIXA LTD.
Inventor: Mahmoud Farhadiroushan , Daniel Finfer , Veronique Mahue , Tom Parker , Sergey Shatalin , Dmitry Strusevich
CPC classification number: G01F1/661 , G01D5/3537 , G02B6/4415
Abstract: Embodiments of the present invention provide a cable for optical fiber sensing applications formed from fiber wound around a cable core. A protective layer is then preferably placed over the top of the wound fiber, to protect the fiber, and to help keep it in place on the cable core. The cable core is preferably of a diameter to allow bend-insensitive fiber to be wound thereon with low bending losses. The effect of winding the fiber onto the cable core means that the longitudinal sensing resolution of the resulting cable is higher than simple straight fiber, when the cable is used with an optical fiber sensing system such as a DAS or DTS system. The achieved resolution for the resulting cable is a function of the fiber winding diameter and pitch, with a larger diameter and reduced winding pitch giving a higher longitudinal sensing resolution.
Abstract translation: 本发明的实施例提供了一种用于光纤传感应用的电缆,其由缠绕在电缆芯上的光纤形成。 然后优选将保护层放置在缠绕光纤的顶部上方,以保护光纤,并帮助将其保持在电缆芯上的适当位置。 电缆芯优选具有允许弯曲不敏感纤维以低弯曲损耗缠绕在其上的直径。 将光纤缠绕到电缆芯上的效果意味着当电缆与诸如DAS或DTS系统的光纤传感系统一起使用时,所得电缆的纵向感测分辨率高于简单的直线光纤。 所得到的电缆的分辨率是光纤绕组直径和间距的函数,具有较大的直径和减小的绕组间距,从而提供更高的纵向感测分辨率。
-
公开(公告)号:US20150285064A1
公开(公告)日:2015-10-08
申请号:US14440138
申请日:2013-11-01
Applicant: SILIXA LTD.
Inventor: Mahmoud Farhadiroushan , Tom Parker , Daniel Finfer , Veronique Mahue
CPC classification number: E21B47/123 , E21B47/02208 , G01F1/7086 , G01N29/024 , G01N29/46 , G01N2291/02836 , G01N2291/106 , G01P5/241
Abstract: Externally generated noise can be coupled into a fluid carrying structure such as a pipe, well, or borehole so as to artificially acoustically “illuminate” the pipe, well, or borehole, and allow fluid flow in the structure or structural integrity to be determined. In the disclosed system, externally generated noise is coupled into the structure being monitored at the same time as data logging required to undertake the monitoring is performed. This has three effects. First, the externally generated sound is coupled into the structure so as to “illuminate” acoustically the structure to allow data to be collected from which fluid flow may be determined, and secondly the amount of data that need be collected is reduced, as there is no need to log data when the structure is not being illuminated. Thirdly, there are signal processing advantages in having the data logging being undertaken only when the acoustic illumination occurs.
Abstract translation: 外部产生的噪声可以耦合到诸如管道,井或井眼之类的流体承载结构中,以便人为地声学地“照亮”管道,井或钻孔,并且允许确定结构中的流体流动或结构完整性。 在所公开的系统中,在执行进行监视所需的数据记录的同时,将外部产生的噪声耦合到被监视的结构中。 这有三个效果。 首先,外部产生的声音被耦合到结构中以便在声学上“发光”结构以允许从哪个流体流可以被确定的数据被收集,其次可以减少需要收集的数据量,因为 当结构不亮时不需要记录数据。 第三,在仅在声光照射时才进行数据记录的信号处理优点。
-
-
-
-
-