-
公开(公告)号:US20190089015A1
公开(公告)日:2019-03-21
申请号:US15706835
申请日:2017-09-18
Applicant: StoreDot Ltd.
Inventor: Ron PAZ , Nir KEDEM , Doron BURSHTAIN , Nir BARAM , Nir POUR , Daniel ARONOV
IPC: H01M10/42 , H01M10/0525 , H01M10/48 , H01M10/44 , G01R31/36
Abstract: Systems and methods are provided, in which the level of metal ions in cells stacks and lithium ion batteries is regulated in situ, with the electrodes of the cell stack(s) in the respective pouches. Regulation of metal ions may be carried out electrochemically by metal ion sources in the pouches, electrically connected to the electrodes. The position and shape of the metal ion sources may be optimized to create uniform metal ion movements to the electrode surfaces and favorable SEI formation. The metal ion sources may be removable, or comprise a lithium source for lithiating the anodes or cathodes during operation of the battery according to SoH parameters. Regulation of metal ions may be carried out from metal ion sources in separate electrolyte reservoir(s), with circulation of the metal-ion-containing electrolyte through the cell stacks in the pouches prior or during the formation.
-
公开(公告)号:US20200006811A1
公开(公告)日:2020-01-02
申请号:US16565500
申请日:2019-09-10
Applicant: StoreDot Ltd.
Inventor: Doron BURSHTAIN , Nir KEDEM , Daniel ARONOV
IPC: H01M10/0567 , H01M4/38 , H01M4/58 , H01M4/587 , H01M4/36 , H01M4/60 , H01M10/0525
Abstract: Electrolytes, anodes, lithium ion cells and methods are provided for preventing lithium metallization in lithium ion batteries to enhance their safety. Electrolytes comprise up to 20% ionic liquid additives which form a mobile solid electrolyte interface during charging of the cell and prevent lithium metallization and electrolyte decomposition on the anode while maintaining the lithium ion mobility at a level which enables fast charging of the batteries. Anodes are typically metalloid-based, for example include silicon, germanium, tin and/or aluminum. A surface layer on the anode bonds, at least some of the ionic liquid additive to form an immobilized layer that provides further protection at the interface between the anode and the electrolyte, prevents metallization of lithium on the former and decomposition of the latter.
-
13.
公开(公告)号:US20190157669A1
公开(公告)日:2019-05-23
申请号:US16254644
申请日:2019-01-23
Applicant: STOREDOT LTD.
Inventor: Doron BURSHTAIN , Nir KEDEM , Eran SELLA , Daniel ARONOV
IPC: H01M4/36 , H01M4/38 , H01M4/62 , H01M4/1395 , H01M10/0525 , H01M4/134
Abstract: Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
-
公开(公告)号:US20190148784A1
公开(公告)日:2019-05-16
申请号:US16248213
申请日:2019-01-15
Applicant: StoreDot Ltd.
Inventor: Ron PAZ , Nir KEDEM , Doron BURSHTAIN , Nir BARAM , Nir POUR , Daniel ARONOV
IPC: H01M10/42 , H01M10/0525
CPC classification number: H01M10/4257 , H01M4/0461 , H01M10/0445 , H01M10/0525 , H01M10/446 , H01M2010/4271
Abstract: Systems and methods are provided, in which the level of metal ions in cells stacks and lithium ion batteries is regulated in situ, with the electrodes of the cell stack(s) in the respective pouches. Regulation of metal ions may be carried out electrochemically by metal ion sources in the pouches, electrically connected to the electrodes. The position and shape of the metal ion sources may be optimized to create uniform metal ion movements to the electrode surfaces and favorable SEI formation. The metal ion sources may be removable, or comprise a lithium source for lithiating the anodes or cathodes during operation of the battery according to SoH parameters. Regulation of metal ions may be carried out from metal ion sources in separate electrolyte reservoir(s), with circulation of the metal-ion-containing electrolyte through the cell stacks in the pouches prior or during the formation.
-
-
-