摘要:
The process for preparing crystalline titania powders is provided. The process comprises dissolving titanium salt in a mixed solvent of water and alcohol, heating the resulting solution to 15.degree..about.75.degree. C. to form titanium hydroxide precipitates, and crystallizing the titanium hydroxide precipitates.
摘要:
Disclosed is an electrolyte for batteries, which comprises: (a) an electrolyte salt; (b) an electrolyte solvent; and (c) a sulfonate-based compound containing at least one electron withdrawing group (EWG) selected from the group consisting of a cyano group (—CN), an isocyanate group (—NCO), a thiocyanate group (—SCN) and an isothiocyanate group (—NCS). An electrode comprising the sulfonate-based compound or a chemical reaction product thereof, partially or totally formed on the surface thereof, and an electrochemical device comprising the electrolyte and/or the electrode are also disclosed. The electrochemical device using the sulfonate-based compound containing a cyano group, an isocyanate group, a thiocyanate group and/or an isothiocyanate group as an additive for electrolytes can provide significantly improved high-temperature lifespan characteristics.
摘要:
Disclosed is a manganese-based lithium secondary battery comprising a cathode containing manganese-based lithium metal oxide, an anode, and an electrolyte, wherein the anode comprises an anode active material in which a Mn scavenger capable of reducing manganese ions on a surface by conducting or semiconducting properties is coated on part or all of anode active material particles. Through the use of the Mn scavenger, manganese ion dissolved from the manganese-based cathode active material into the electrolyte is preferentially deposited on the Mn scavenger coated on the surface of the anode active material particles, such that the dissolved manganese ion is inhibited from being deposited directly on the surface of the anode active material, and a decomposition of the electrolyte with the deposited manganese component is inhibited. Accordingly, the use of the Mn scavenger can provide a manganese-based lithium secondary battery having excellent storage performance.