摘要:
Method and apparatus for dynamically placing sensors in a 3D model is provided. Specifically, in one embodiment, the method selects a 3D model and a sensor for placement into the 3D model. The method renders the sensor and the 3D model in accordance with sensor parameters associated with the sensor and parameters desired by a user. In addition, the method determines whether an occlusion to the sensor is present.
摘要:
A method and apparatus for providing immersive surveillance wherein a remote security guard may monitor a scene using a variety of imagery sources that are rendered upon a model to provide a three-dimensional conceptual view of the scene. Using a view selector, the security guard may dynamically select a camera view to be displayed on his conceptual model, perform a walk through of the scene, identify moving objects and select the best view of those moving objects and so on.
摘要:
The present invention provides a system and method for processing real-time rapid capture, annotation and creation of an annotated hyper-video map for environments. The method includes processing video, audio and GPS data to create the hyper-video map which is further enhanced with textual, audio and hyperlink annotations that will enable the user to see, hear, and operate in an environment with cognitive awareness. Thus, this annotated hyper-video map provides a seamlessly navigable, situational awareness and indexable high-fidelity immersive visualization of the environment.
摘要:
Method for tracking an object recorded within a selected frame of a sequence of frames of video data, using a plurality of layers, where at least one object layer of the plurality of layers represents the object includes initializing layer ownership probabilities for pixels of the selected frame using a non-parametric motion model, estimating a set of motion parameters of the plurality of layers for the selected frame using a parametric maximization algorithm and tracking the object. The non-parametric motion model is optical flow and includes warping the mixing probabilities, the appearances of the plurality of layers, and the observed pixel data from the pixels of the preceding frame to the pixels of the selected frame to initialize the layer ownership probabilities for the pixels of the selected frame.
摘要:
A method and system for performing automated training environment monitoring and evaluation. The training environment may include a mixed reality elements to enhance a training experience.
摘要:
A unified approach, a fusion technique, a space-time constraint, a methodology, and system architecture are provided. The unified approach is to fuse the outputs of monocular and stereo video trackers, RFID and localization systems and biometric identification systems. The fusion technique is provided that is based on the transformation of the sensory information from heterogeneous sources into a common coordinate system with rigorous uncertainties analysis to account for various sensor noises and ambiguities. The space-time constraint is used to fuse different sensor using the location and velocity information. Advantages include the ability to continuously track multiple humans with their identities in a large area. The methodology is general so that other sensors can be incorporated into the system. The system architecture is provided for the underlying real-time processing of the sensors.
摘要:
A unified approach, a fusion technique, a space-time constraint, a methodology, and system architecture are provided. The unified approach is to fuse the outputs of monocular and stereo video trackers, RFID and localization systems and biometric identification systems. The fusion technique is provided that is based on the transformation of the sensory information from heterogeneous sources into a common coordinate system with rigorous uncertainties analysis to account for various sensor noises and ambiguities. The space-time constraint is used to fuse different sensor using the location and velocity information. Advantages include the ability to continuously track multiple humans with their identities in a large area. The methodology is general so that other sensors can be incorporated into the system. The system architecture is provided for the underlying real-time processing of the sensors.
摘要:
A method and apparatus for video surveillance is disclosed. In one embodiment, a sequence of scene imagery representing a field of view is received. One or more moving objects are identified within the sequence of scene imagery and then classified in accordance with one or more extracted spatio-temporal features. This classification may then be applied to determine whether the moving object and/or its behavior fits one or more known events or behaviors that are causes for alarm.
摘要:
A method and apparatus for video surveillance is disclosed. In one embodiment, a sequence of scene imagery representing a field of view is received. One or more moving objects are identified within the sequence of scene imagery and then classified in accordance with one or more extracted spatio-temporal features. This classification may then be applied to determine whether the moving object and/or its behavior fits one or more known events or behaviors that are causes for alarm.
摘要:
A system and method for efficiently locating in 3D an object of interest in a target scene using video information captured by a plurality of cameras. The system and method provide for multi-camera visual odometry wherein pose estimates are generated for each camera by all of the cameras in the multi-camera configuration. Furthermore, the system and method can locate and identify salient landmarks in the target scene using any of the cameras in the multi-camera configuration and compare the identified landmark against a database of previously identified landmarks. In addition, the system and method provide for the integration of video-based pose estimations with position measurement data captured by one or more secondary measurement sensors, such as, for example, Inertial Measurement Units (IMUs) and Global Positioning System (GPS) units.