Abstract:
Embodiments of the invention generally provide an input device that includes a plurality of sensing elements that are interconnected in desired way to acquire positional information of an input object, so that the acquired positional information can be used by other system components to control a display or other useful system components. One or more of the embodiments described herein, utilizes one or more of the techniques and sensor electrode array configuration disclosed herein to reduce or minimize the number of traces and/or electrodes required to sense the position of an input object within a sensing region of the input device.
Abstract:
A processing system for a transcapacitive input device configured to detect input objects in a sensing region of the input device includes a transmitter module including transmitter circuitry, a receiver module, and a determination module. The transmitter module is configured to simultaneously transmit, using a plurality of transmitter electrodes, a plurality of transmitter signals according to a plurality of significantly non-orthogonal digital codes. At least two codes of the plurality of significantly non-orthogonal digital codes are significantly non-orthogonal. The receiver module is configured to receive, with a plurality of receiver electrodes, a plurality of resulting signals. Each resulting signal of the plurality of resulting signals comprises multiple effects corresponding to multiple transmitter signals of the plurality of transmitter signals. The determination module is configured to determine object information for input in the sensing region using the plurality of resulting signals.
Abstract:
A processing system includes a transmitter module, a receiver module, and a determination module. The transmitter module is configured to drive a first contact, a second contact, and a third contact of a first transmitter electrode, wherein the first contact is disposed between the second contact and the third contact. This produces a first voltage gradient between the first contact and the second contact, and produces a second voltage gradient between the first contact and the third contact. The receiver module receives, with a first receiver electrode, a first resulting signal including effects of the first voltage gradient, and to receive, with a second receiver electrode, a second resulting signal comprising effects of the second voltage gradient. The determination module determines positional information for an input object located within a sensing region based on the first resulting signal and the second resulting signal.
Abstract:
Embodiments of the invention generally provide an input device that includes a plurality of sensing elements that are interconnected in desired way to acquire positional information of an input object, so that the acquired positional information can be used by other system components to control a display or other useful system components. One or more of the embodiments described herein, utilizes one or more of the techniques and sensor electrode array configuration disclosed herein to reduce or minimize the number of traces and/or electrodes required to sense the position of an input object within a sensing region of the input device.
Abstract:
A processing system including an amplifier configured to generate, from multiple spatial-common-mode-processed signals, a spatial common mode estimate and multiple feedback signals. The processing system includes multiple charge integrators configured to obtain resulting signals from the capacitive sensor electrodes, each of the resulting signals including a spatial common mode component and a residual noise component. The charge integrators generate multiple spatial-common-mode-processed signals by mitigating the spatial common mode component and the residual noise component in the resulting signals using the feedback signals. The processing system includes a programmable gain amplifier configured to determine the spatial common mode estimate.
Abstract:
A method includes obtaining a capacitive function of ground plane displacement and gap distance, and optimizing, using the capacitive function, an optimization function to obtain multiple slice lengths. The slice lengths correspond to multiple gap distances between a first sensor electrode and a second sensor electrode. The method further includes defining a sensor electrode shape using slice lengths and gap distances, defining a sensor electrode pattern based on the sensor electrode shape, and storing the sensor electrode pattern.
Abstract:
Methods, systems and devices are described for operating an electronic system which includes a first plurality of sensor electrodes disposed in a first layer and configured to detect input objects at an input surface of the input device, the first plurality of sensor electrodes including a first subset of transmitter electrodes; a second plurality of sensor electrodes configured to detect a force imparted to the input surface and configured for capacitive coupling with the first subset of transmitter electrodes; and a compressible dielectric configured to compress in response to force applied to the input surface. The capacitive coupling between the transmitter electrodes and the second plurality of sensor electrodes is configured to vary in response to the applied force.
Abstract:
Embodiments of the invention generally provide an input device that includes a plurality of sensing elements that are interconnected in desired way to acquire positional information of an input object, so that the acquired positional information can be used by other system components to control a display or other useful system components. One or more of the embodiments described herein, utilizes one or more of the techniques and sensor electrode array configuration disclosed herein to reduce or minimize the number of traces and/or electrodes required to sense the position of an input object within a sensing region of the input device.
Abstract:
The embodiments described herein provide devices and methods that facilitate improved input device performance. Specifically, the devices and methods provide improved resistance to the effect of interference on input devices, and in particular, to the effect of unison noise on proximity sensors that use capacitive techniques to generate images of sensor values. The devices and methods provide improved resistance to the effects of interface by using images of sensor values and one or more profiles of sensor values. An image of sensor values is combined with one or more profiles of sensor values to produce a modified image of sensor values, the modified image having reduced errors due to noise. This reduction in errors due to noise can improve the accuracy and performance of the input device.
Abstract:
An input device including a keyboard having a plurality of key assemblies, each of at least a subset of the key assemblies including a key cap having a top surface configured to be contacted by an input object, a key base disposed underneath the key cap and including a capacitive sensor, and a deformable dielectric disposed between the key cap and the key base. The deformable dielectric and the capacitive sensor have a first area of contact when the key cap is in a non-activated position, and a second area of contact greater than the first area during activation of the key cap.