Abstract:
According to an aspect of the present disclosure, a video encoder selects a block of intermediate size from a set of block sizes for intra-prediction estimation for encoding a video signal. A set of neighbouring blocks with the intermediate size are tested for combining. If the set of neighbouring blocks are determined to be combinable, the video encoder selects a larger block size formed by the tested neighbouring blocks for encoding. On the other hand, if the set of neighbouring blocks are determined to be not combinable, the video encoder selects a smaller block size from the set of tested neighbouring blocks for prediction. According to another aspect of the present disclosure, the best mode for intra-prediction is determined by first intra-predicting a block with intermediate modes in a set of modes. Then the intra-predictions are performed for the neighbouring modes of at least one intermediate mode.
Abstract:
A method for intra-prediction estimation is provided that includes determining a best intra-prediction mode for a block of samples, wherein at least some of the neighboring samples used for intra-prediction estimation include approximate reconstructed samples, applying approximate reconstruction to the block of samples using the best intra-prediction mode to generate a block of approximate reconstructed samples, and storing the block of approximate reconstructed samples for use in intra-prediction estimation of other blocks of samples.
Abstract:
A video codec for encoding a sequence of video frames divides a video frame area into number of row segments. The Video encoder selects a different set of row segments in each video frame in a set of video frames and encodes the selected set of row segments by intra-prediction. As a result, the selected part of the frame is intra-refreshed. The video codec limits the maximum value of the vertical global motion vector GMVy to zero and video codec adjust the number of row segments in the select set of row segments based on the height of the search range configured for the motion estimation. As a result, the video codec may not refer to an un-refreshed portion in the previous frame for encoding an already refreshed area of the current frame.
Abstract:
A method for intra-prediction estimation is provided that includes determining a best intra-prediction mode for a block of samples, wherein at least some of the neighboring samples used for intra-prediction estimation include approximate reconstructed samples, applying approximate reconstruction to the block of samples using the best intra-prediction mode to generate a block of approximate reconstructed samples, and storing the block of approximate reconstructed samples for use in intra-prediction estimation of other blocks of samples.
Abstract:
A method for intra-prediction estimation is provided that includes determining a best intra-prediction mode for a block of samples, wherein at least some of the neighboring samples used for intra-prediction estimation include approximate reconstructed samples, applying approximate reconstruction to the block of samples using the best intra-prediction mode to generate a block of approximate reconstructed samples, and storing the block of approximate reconstructed samples for use in intra-prediction estimation of other blocks of samples.
Abstract:
A video codec for encoding a sequence of video frames divides a video frame area into number of row segments. The Video encoder selects a different set of row segments in each video frame in a set of video frames and encodes the selected set of row segments by intra-prediction. As a result, the selected part of the frame is intra-refreshed. The video codec limits the maximum value of the vertical global motion vector GMVy to zero and video codec adjust the number of row segments in the select set of row segments based on the height of the search range configured for the motion estimation. As a result, the video codec may not refer to an un-refreshed portion in the previous frame for encoding an already refreshed area of the current frame.
Abstract:
A method and system for bit rate control during encoding of multimedia data are disclosed. A change in complexity of a multimedia picture relative to complexity associated with one or more multimedia pictures in a multimedia sequence is determined. A complexity associated with a multimedia picture is determined based on number of bits and an average quantization associated with the multimedia picture. A bit rate is adjusted for encoding the multimedia picture based on the change in complexity of the multimedia picture. The bit rate is increased on determining an increase in complexity of the multimedia picture and is decreased on determining a decrease in complexity of the multimedia picture. Utilization of additional bits during the increase in the bit rate and saving of bits during the decrease in the bit rate are compensated during adjusting of bit rates for encoding subsequent multimedia pictures in the multimedia sequence.
Abstract:
According to an aspect of the present disclosure, a video encoder selects a block of intermediate size from a set of block sizes for intra-prediction estimation for encoding a video signal. A set of neighbouring blocks with the intermediate size are tested for combining. If the set of neighbouring blocks are determined to be combinable, the video encoder selects a larger block size formed by the tested neighbouring blocks for encoding. On the other hand, if the set of neighbouring blocks are determined to be not combinable, the video encoder selects a smaller block size from the set of tested neighbouring blocks for prediction. According to another aspect of the present disclosure, the best mode for intra-prediction is determined by first intra-predicting a block with intermediate modes in a set of modes. Then the intra-predictions are performed for the neighbouring modes of at least one intermediate mode.
Abstract:
A video codec for encoding a sequence of video frames divides a video frame area into number of row segments. The Video encoder selects a different set of row segments in each video frame in a set of video frames and encodes the selected set of row segments by intra-prediction. As a result, the selected part of the frame is intra-refreshed. The video codec limits the maximum value of the vertical global motion vector GMVy to zero and video codec adjust the number of row segments in the select set of row segments based on the height of the search range configured for the motion estimation. As a result, the video codec may not refer to an un-refreshed portion in the previous frame for encoding an already refreshed area of the current frame.
Abstract:
A video codec for encoding a sequence of video frames divides a video frame area into number of row segments. The Video encoder selects a different set of row segments in each video frame in a set of video frames and encodes the selected set of row segments by intra-prediction. As a result, the selected part of the frame is intra-refreshed. The video codec limits the maximum value of the vertical global motion vector GMVy to zero and video codec adjust the number of row segments in the select set of row segments based on the height of the search range configured for the motion estimation. As a result, the video codec may not refer to a un-refreshed portion in the previous frame for encoding an already refreshed area of the current frame.