Abstract:
Systems, methods, and computer program products provide for time critical packet transmission. An electronic device may include a transceiver and a processor that is configured to receive or transmit, via the transceiver, a plurality of packets having respective headers conforming to a layer below a network layer, and the first header of a first packet of the plurality of packets may include a source address and a hop limit field. The packet may be transmitted according to the layer below the network layer, thereby providing a smaller packet.
Abstract:
A radio communications device includes a RTC configured to run even during sleep for receiving from a coordinator node (CN) in an asynchronous channel hopping WPAN an asynchronous hopping sequence (AHS) frame that includes the CN's hopping sequence. A processor implements a stored sleepy device operation in asynchronous channel hopping networks algorithm. The algorithm is for determining a time stamp for the AHS frame and the CN's initial timing position within the hopping sequence, storing the time stamp, going to sleep and upon waking up changing a frequency band of its receive (Rx) channel to an updated fixed channel. A data request command frame is transmitted by the device on the CN's listening channel that is calculated from the CN's hopping sequence, time stamp, CN's initial timing position and current time, and the device receives an ACK frame transmitted by the CN at the updated fixed channel of Rx operation.
Abstract:
Disclosed embodiments include a network device having a split network stack that includes a physical (PHY) layer associated with first and second media access control (MAC) protocol sublayers, a processing device, and memory storing instructions that, when executed by the processing device, cause the processing device to select a route through the split network stack that includes one of the first and second MAC protocol sublayers but not the other one of the first and second MAC protocol sublayers.
Abstract:
In a disclosed embodiment, a power line communication (PLC) device sends an active channel scan request from a host layer to an adaptation layer. In response to the adaptation layer receiving the request, a MAC layer is instructed to broadcast a beacon request frame. The PLC device receives from each of one or more neighboring devices that respond to the beacon request frame a beacon frame including an address and a personal area network (PAN) identifier. A listing of PAN identifiers indicated by the beacon frames is provided to the host layer. The host layer selects a target network corresponding to a selected PAN identifier and selects one of the one or more neighboring devices associated with the selected PAN identifier as a target bootstrapping agent. The host layer instructs the adaptation layer to join the target network using the target bootstrapping agent.
Abstract:
Systems and methods for routing protocols for power line communications (PLC) are described. In some embodiments, a method performed by a PLC device, such as a PLC meter, may include active discovering and identifying at least one bootstrapping agent and a personal area network (PAN) identifier for one or more networks that are operating within a personal operating space of the PLC device. The device selects a target bootstrapping agent to use for the join process with a target network. The target bootstrapping agent may be selected from a list of bootstrapping agents associated with the target PAN identifier. If the attempt to join the target network fails, then the device further determines if other bootstrapping agents are associated with the target PAN identifier. The device selects an alternate target bootstrapping agent from the other bootstrapping agents that are associated with the target PAN identifier and reattempts the join process.
Abstract:
Systems and methods for routing protocols for power line communications (PLC) are described. In some embodiments, a method performed by a PLC device, such as a PLC meter, may include identifying at least one bootstrapping agent and a personal area network (PAN) identifier for one or more networks that are operating within a personal operating space of the PLC device. The device selects a target bootstrapping agent to use for the join process with a target network. The target bootstrapping agent may be selected from a list of bootstrapping agents associated with the target PAN identifier. If the attempt to join the target network fails, then the device further determines if other bootstrapping agents are associated with the target PAN identifier. The device selects an alternate target bootstrapping agent from the other bootstrapping agents that are associated with the target PAN identifier and reattempts the join process.
Abstract:
A radio communications device includes a RTC configured to run even during sleep for receiving from a coordinator node (CN) in an asynchronous channel hopping WPAN an asynchronous hopping sequence (AHS) frame that includes the CN's hopping sequence. A processor implements a stored sleepy device operation in asynchronous channel hopping networks algorithm. The algorithm is for determining a time stamp for the AHS frame and the CN's initial timing position within the hopping sequence, storing the time stamp, going to sleep and upon waking up changing a frequency band of its receive (Rx) channel to an updated fixed channel. A data request command frame is transmitted by the device on the CN's listening channel that is calculated from the CN's hopping sequence, time stamp, CN's initial timing position and current time, and the device receives an ACK frame transmitted by the CN at the updated fixed channel of Rx operation.
Abstract:
In a disclosed embodiment, a power line communication (PLC) device sends an active channel scan request from a host layer to an adaptation layer. In response to the adaptation layer receiving the request, a MAC layer is instructed to broadcast a beacon request frame. The PLC device receives from each of one or more neighboring devices that respond to the beacon request frame a beacon frame including an address and a personal area network (PAN) identifier. A listing of PAN identifiers indicated by the beacon frames is provided to the host layer. The host layer selects a target network corresponding to a selected PAN identifier and selects one of the one or more neighboring devices associated with the selected PAN identifier as a target bootstrapping agent. The host layer instructs the adaptation layer to join the target network using the target bootstrapping agent.
Abstract:
A bootstrapping server may include active discovering and be identified as at least one bootstrapping agent. A personal area network (PAN) identifier for one or more networks that are operating within a personal operating space of the bootstrapping server is provided . The bootstrapping server is selected a target bootstrapping agent to use for the join process with a target network. If an attempt to join the target network fails, then the bootstrapping server further determines if other bootstrapping agents are associated with the target PAN identifier. The bootstrapping server selects an alternate target bootstrapping agent from the other bootstrapping agents that are associated with the target PAN identifier and reattempts the join process.
Abstract:
A communication system and method includes receiving payload data of first and second media access control (MAC) frames. A MAC-level protocol is identified in response to the indication of the selected network for each of the first and second MAC frames. The payload data of the first and second MAC frames is transmitted and/or received across respective networks transmitted using, for example, power line communications signals over a common communications medium. The common communications medium is operable for carrying signals of a plurality of networks.