Abstract:
A laser Doppler vibrometer architecture and detection technique that can remotely identify targets based on their natural vibration frequencies using a scanning Fabry-Pérot interferometer. The proposed systems and methods can have stand-off distances longer than the coherence length of the laser by using spectroscopic detection methods instead of coherent heterodyne detection using a local oscillator. Pulsed lasers can be used which have high power output. In addition, by not using an acousto-optic modulator, the speed of the detectable target is not limited. Also the mixing efficiency of the return signal can be improved.
Abstract:
Methods and apparatus are disclosed herein to determine relative positioning between moving platforms. An example method includes sending a first signal via a first moving platform to be received by a second moving platform. The example method includes receiving, at the first platform, a second signal sent by the second moving platform and aligning the first signal and the second signal. The example method includes determining, at the first moving platform, a first duration of time between the sending of a first pulse and the receiving of a second pulse. The example method includes determining, at the second moving platform, a second duration of time between the sending of the second pulse and the receiving of the first pulse. The example method includes determining a distance of the first moving platform relative to the second moving platform based on the first and second durations of time.
Abstract:
A non-contact biometric sensing device is described. The device includes a processing device, a user interface communicatively coupled to the processing device, a display communicatively coupled to the processing device, a laser doppler vibrometer sensor communicatively coupled to the processing device, and an infrared camera communicatively coupled to the processing device. The processing device is programmed to utilize mechanical motion data received from the laser doppler vibrometer sensor and thermal distributions data from the infrared camera to calculate biometric data, when signals originating from the laser doppler vibrometer sensor and the infrared camera are reflected back towards the device from a target.