摘要:
This invention relates to a coding system and the coding method in encoding information source symbols of an image. When the total number of original information source symbols cannot be known at the decoding site just from the encoded symbols, it is an object to finish the decoding process correctly and decode the symbols equal to the number of original information source symbols.At an encoding site, the total number of information source unit composed of a finite number of information source symbols is placed at the tail of code at the completion of encoding process. For example, at the encoding site, the number of horizontal pels of an image are transmitted in advance as an information source unit and the total number of lines are placed at the tail of code at the completion of encoding process. At the decoding site, the number of decoded lines is counted and decoded up to the number of lines placed at the tail of code. As a result, it is possible to judge the end of information source symbols without missing the total number.
摘要:
A coding system comprises the comparing circuit which compares a magnitude of the range on the number line which is allocated to the most probability symbol with a magnitude of the fixed range on the number line which is allocated to the Less Probability Symbol. If the range allocated to the MPS is smaller than that to the LPS, and when the symbol is the MPS, the range allocated to the LPS is generated. If the range allocated to the MPS is smaller than that to the LPS, and when the symbol is the LPS, the range allocated to the MPS is generated. By the system, a coding efficiency is improved especially when a probability of occurrence of LPS (Less Probability Symbol) is approximate to 1/2.
摘要:
A coding method of a binary Markov information source comprises the steps of providing a range on a number line from 0 to 1 which corresponds to an output symbol sequence from the information source, and performing data compression by binary expressing the position information on the number line corresponding to the output symbol sequence. The present method further includes the steps of providing a normalization number line to keep a desired calculation accuracy by expanding a range of the number line which includes a mapping range, by means of a multiple of a power of 2, when the mapping range becomes below 0.5 of the range of the number line; allocating a predetermined mapping range on the normalization number line for less probable symbols LPS proportional to its normal occurrence probability; allocating the remaining mapping range on the normalization number line for more probable symbols MPS; and reassigning the predetermined mapping range to the remaining mapping range the half of a portion where the allocated remaining range is less than 0.5, when the allocated remaining range becomes below 0.5.
摘要:
A coding method of a binary Markov information source comprises the steps of providing a range on a number line from 0 to 1 which corresponds to an output symbol sequence from the information source, and performing data compression by binary expressing the position information on the number line corresponding to the output symbol sequence. The present method further includes the steps of providing a normalization number line to keep a desired calculation accuracy by expanding a range of the number line which includes a mapping range, by means of a multiple of a power of 2, when the mapping range becomes below 0.5 of the range of the number line; allocating a predetermined mapping range on the normalization number line for less probable symbols LPS proportional to its normal occurrence probability; allocating the remaining mapping range on the normalization number line for more probable symbols MPS; and reassigning the predetermined mapping range to the remaining mapping range the half of a portion where the allocated remaining range is less than 0.5, when the allocated remaining range becomes below 0.5.
摘要:
Although data is transmitted with efficiency by an arithmetic encoding system, the number of carry control signals increases in proportion to the number of consecutive bits "1" s or bytes X`FF` s in a conventional system. In the present invention, an arithmetic encoder 302 `detects the possibility of a carry generated during arithmetic coding operation being propagated beyond at least a predetermined number of consecutive bytes X`FF` s in a supplied arithmetic code 315. When the propagation of the carry is impossible, a carry control signal is inserted into the first 2 bits of the byte other than X`FF` which occurs immediately after the consecutive bytes X`FF` s so as to transmit the presence or absence of a carry. An arithmetic decoder 303 detects the continuation of at least a predetermined number of bytes X`FF` s in the arithmetic code 315, and arithmetically decodes an output value YN316 on the basis of the predicted value MPS317 of the occurrence probability of the output value YN316 to be encoded and the region width Qe of the complementary predicted value LPS. Since the number of total bits of the inserted carry control signals is reduced by this "one-time 2-bits insertion system", the total number of transmitted code bits is also reduced.
摘要:
A prediction value is previously set in an MPS table corresponding to a state number, a state number for an encoding pixel is obtained from a STATE table, the prediction value is determined based on the MPS table using the state number, a pixel-to-symbol converter compares the prediction value and the encoding pixel to obtain a symbol, and an arithmetic encoder obtains an LPS interval from an LSZ table using the state number for the encoding pixel, and the arithmetic encoder implements encoding based on the symbol and the LPS interval.
摘要:
A coding system comprises the comparing circuit which compares a magnitude of the range on the number line which is allocated to the most probability symbol with a magnitude of the fixed range on the number line which is allocated to the Less Probability Symbol. If the range allocated to the MPS is smaller than that to the LPS, and when the symbol is the MPS, the range allocated to the LPS is generated. If the range allocated to the MPS is smaller than that to the LPS, and when the symbol is the LPS, the range allocated to the MPS is generated. By the system, a coding efficiency is improved especially when a probability of occurrence of LPS (Less Probability Symbol) is approximate to 1/2.
摘要:
An image coding apparatus includes a rate control information extraction means for determining which up to a coding pass in which code block should be coded from the sum of the code amounts of the code blocks, the slope of an RD curve calculated from the distortion difference between a coding distortion at a time of coding each coding pass and a coding distortion at a time of coding a preceding coding pass, and the number of output bytes of the code amount of each coding pass, and the inverse of one of given rate control parameters which are listed in order of decreasing monotonously, and for outputting an end-of-coding pass, and a coded data extraction means for reading coded data including up to coded data corresponding to the end-of-coding pass, for adding the number of coding passes to the coded data, and for outputting them as a code stream.
摘要:
The present invention aims to increase an encoding efficiency when the occurrence probability of LPS (less probable symbol) is low. An encoding apparatus has a interval size (A), a interval limit value (C), divides a set interval which is set on a number line, selects a sub-interval corresponding to an occurring symbol, updates the interval size (A) and the interval limit value (C) with a limited precision based on the selected sub-interval size, and encodes a coordinate within the interval. Based on the probability (the occurrence probability of symbol) output from a learning memory, the sub-interval size (LSZ, dLSZ) and the sub-interval limit value are obtained. A correction value calculator computes the correction value based on the dLSZ, reflects the computed correction value (dA, dC) to the renormalized subinterval size (rA) and the renormalized sub-interval limit value (rC), updates the interval size (A7) to the sub-interval size, updates the interval limit value (C8) to the sub-interval limit value, and outputs a code.
摘要:
A two-dimensional code reading device 20 is provided with image pickup device 22 which receives light reflected from either of a first inclined portion 12 and a second inclined portion 13 in a direction forming an angle θ satisfying expression (1) with respect to the normal-line direction R, and light source 21 which irradiates either of the inclined portions from a direction forming an angle α satisfying expression (2) with respect to the normal-line direction R: 30°≦θ≦35° (1) Δθ=θ−180°+α+2β (2) where β is less than 90°, Δθ is not less than −10° but not more than 10°, and θ and α are angles in a turn direction reverse to a turn direction at which either of the inclined portions forms the angle β with respect to the normal-line direction R.