Abstract:
The invention concerns a device for regulating the relative angular speed between a magnetic structure and a resonator magnetically coupled to each other and forming an oscillator which defines a magnetic escapement. The magnetic structure includes at least one annular magnetic path at least partially formed of a magnetic material of which one physical parameter is correlated to the magnetic potential energy of the oscillator, the magnetic material being arranged along the annular path so that the physical parameter varies angularly in a periodic manner. The annular path includes, in each angular period, an area of accumulation of magnetic potential energy in the oscillator, radially adjacent to an impulse area. The magnetic material, in each accumulation area, is arranged so that the physical parameter of said magnetic material gradually increases angularly or gradually decreases angularly.
Abstract:
The invention concerns a device for regulating the relative angular speed between a magnetic structure and a resonator magnetically coupled to each other and forming an oscillator which defines a magnetic escapement. The magnetic structure includes at least one annular magnetic path at least partially formed of a magnetic material and the resonator includes at least one element for magnetic coupling to the annular magnetic path, this coupling element being formed of a magnetic material having a physical parameter correlated to the magnetic potential energy of the oscillator. The radial dimension of the annular magnetic path is smaller than a corresponding dimension of the coupling element, and the magnetic material is arranged so that the physical parameter of said magnetic material gradually increases angularly or gradually decreases angularly in order to obtain an angularly extended magnetic potential energy area in each angular period of the annular magnetic path.
Abstract:
Method for adjusting the rate of a basic oscillator of a watch arranged to oscillate at a nominal frequency N0, with a master oscillator generating an excitation frequency NE approximately equal to an integer multiple of this nominal frequency N0, the master oscillator subjecting the watch to excitation or a modulated motion during a transition phase after which the basic oscillator is stabilised at the excitation frequency NE, and a state of display correction method with a winder for mechanical or automatic watches, moving a support carrying the watch and comprising a state of display correction oscillator, having a lower variation of rate value than the initial variation of rate value DI of this basic oscillator, and oscillating at a correction frequency NC to impose oscillation or a motion on the watch, during a state of display correction phase whose duration is adjusted to exactly correct a state of display error measured at the initial moment of actuation.
Abstract:
A horological movement including a mechanical resonator and a hybrid escapement including an escapement wheel and a pallet assembly with at least one magnetic pallet-stone formed of a magnet and associated with a mechanical banking, the escapement wheel including a periodic magnetised structure defining increasing gradients of magnetic potential energy for the magnetic pallet-stone, and protruding parts associated with the increasing gradients of magnetic potential energy. When the force torque is equal to a nominal force torque or has a value within at least an upper part of a given range of values, one of the protruding parts of the escapement wheel is subjected to at least one shock on the mechanical banking of the pallet assembly after the magnetic pallet-stone has climbed any one of the increasing gradients of magnetic potential energy, thus dissipating at least partially a kinetic energy of the escapement wheel.
Abstract:
A method for adjusting the rate of a watch with an oscillator arranged to generate oscillation at a nominal frequency N0, with a servo-system including a master oscillator arranged to generate excitation oscillation at an excitation frequency NE, which is approximately equal to, or equal to the nominal frequency N0, or to an integer multiple of this nominal frequency N0, the watch is subjected to excitation oscillation or to a modulated motion, generated by the master oscillator, during a transition phase after which the oscillator of the watch is stabilised at excitation frequency NE, and there is incorporated in the servo-system a winder for mechanical or automatic watches, arranged to move a support on which such a watch is fixed.
Abstract:
Method for adjusting the rate of a basic oscillator of a watch arranged to oscillate at a nominal frequency N0, with a master oscillator generating an excitation frequency NE approximately equal to an integer multiple of this nominal frequency N0, the master oscillator subjecting the watch to excitation or a modulated motion during a transition phase after which the basic oscillator is stabilised at the excitation frequency NE, and a state of display correction method with a winder for mechanical or automatic watches, moving a support carrying the watch and comprising a state of display correction oscillator, having a lower variation of rate value than the initial variation of rate value DI of this basic oscillator, and oscillating at a correction frequency NC to impose oscillation or a motion on the watch, during a state of display correction phase whose duration is adjusted to exactly correct a state of display error measured at the initial moment of actuation.
Abstract:
Watch with a timepiece movement, a resonator mechanism, including a magnetic escapement mechanism including an escape wheel set including a magnetized track, with a succession of areas according to a scrolling period in which its magnetic features are repeated, each area including an increasing magnetic field ramp followed by a magnetic field barrier with an increasing field and of higher field gradient that that of the ramp, the track includes a continuous, closed magnetic layer over the entire periphery of the escape wheel set, of constant thickness and variable width, whose geometry defines these magnetic field ramps and barriers, this escape wheel set cooperating with a sprung balance via a pivoting magnetic stop member comprising a pole piece arranged to cooperate alternately with an internal track and an external track of the magnetic layer.
Abstract:
A timepiece oscillator including a resonator formed by a tuning fork which includes at least two mobile oscillating parts, fixed to a connection element by flexible elements whose geometry determines a virtual pivot axis having a determined position with respect to this connection element and around which the respective mobile part oscillates, and the centre of masse of the mobile part coincides in the rest position with the respective virtual pivot axis, and, for at least one of the two mobile parts the flexible elements are formed of intersecting resilient strips extending at a distance from each other in two parallel planes, and whose directions, in projection on one of the parallel planes, intersect at the virtual pivot axis of the mobile part.
Abstract:
A shock absorber device for an arbor of a timepiece element including: a support including a base cup surmounted by a peripheral rim, which is delimited, opposite the cup, by an upper surface, the cup and the rim together defining a housing; a pivot system extending along an arbor, the pivot system being arranged in the housing and including a base including an elastic return mechanism at the periphery thereof, formed by at least one curved arm, including an opening in which is inserted a pivot element configured to cooperate with the arbor. The at least one curved arm is used for locking the pivot system in a bayonet fitting.
Abstract:
The timepiece comprises means for indicating the sunrise and sunset taking account of seasonal variations. These means comprise a sphere reproducing the terrestrial globe, a shell arranged concentrically to the sphere and arranged to demarcate one portion of the terrestrial globe where it is night from another portion where it is day by indicating the position of the Earth's terminator. The shell can pivot about the globe on two axes perpendicular to each other. The shell is driven by the movement so as to rotate at a rate of one revolution per 24 hours about the polar axis. A disconnecting mechanism is controlled by an annual cam which has a profile representative of the tilt of the Sun with respect to the equatorial plane. The disconnecting mechanism controls the tilt of the shell about the axis by means of a drive shaft concentric to the polar axis.