摘要:
According to one embodiment, an organic electroluminescent device includes a first electrode, a plurality of second electrodes and an organic light-emitting layer. The first electrode includes a first major surface and is optical transparency. The second electrodes extend in a first direction parallel to the first major surface and are separated from each other in a second direction parallel to the first major surface and perpendicular to the first direction. An optical transmittance of the second electrodes is lower than an optical transmittance of the first electrode. A distance along the second direction between a line extending in the first direction and a side surface of each of the second electrodes continuously increases and decreases along the first direction. The side surface is unparallel to the first major surface. The organic light-emitting layer is provided between the first electrode and the second electrodes.
摘要:
According to one embodiment, an illumination device includes an organic light-emitting unit, a first electrode, a second electrode and an optical layer. The organic light-emitting unit includes an organic light-emitting layer, a first and a second major surface. The first electrode is provided on the first major surface. The second electrode is provided on the second major surface and includes a conductive layer, a first interconnection and a second interconnection. The first interconnection is electrically connected to the conductive layer and aligned in a first direction parallel to the first major surface. The second interconnection is electrically connected to the conductive layer and aligned apart from the first interconnection and parallel to the first interconnection. The optical layer is provided on a side of the second electrode opposite to the organic light-emitting unit and includes a low refractive index portion and a high refractive index portion.
摘要:
According to one embodiment, an illumination device includes an organic light-emitting unit, a first electrode, a second electrode and an optical layer. The organic light-emitting unit includes an organic light-emitting layer, a first and a second major surface. The first electrode is provided on the first major surface. The second electrode is provided on the second major surface and includes a conductive layer, a first interconnection and a second interconnection. The first interconnection is electrically connected to the conductive layer and aligned in a first direction parallel to the first major surface. The second interconnection is electrically connected to the conductive layer and aligned apart from the first interconnection and parallel to the first interconnection. The optical layer is provided on a side of the second electrode opposite to the organic light-emitting unit and includes a low refractive index portion and a high refractive index portion.
摘要:
The organic electroluminescent device according to the embodiment has: anode and cathode electrodes placed apart from each other, a red and green light-emitting layer and a blue light-emitting layer, and a spacer layer having a thickness of 3 nm to 20 nm inclusive. The light-emitting layers are placed apart from each other and positioned between the electrodes. The spacer layer is positioned between the light-emitting layers, and includes a carrier transport material containing molecules capable of being oriented in the in-plane and vertical direction with an orientational order parameter of −0.5 to −0.2 inclusive.
摘要:
According to one embodiment, an organic electroluminescent device includes first and second electrodes, an interconnection layer, an organic light emitting layer and a light scattering layer. The first electrode has includes first, second and third portions. The interconnection layer is electrically connected to the first electrode. The third portion overlays the interconnection layer when projected to the plane. The first and second portions do not overlay the interconnection layer. The second electrode overlays the second portion and does not overlay the first and the third portions. The organic light emitting layer is provided between the second portion and the second electrode. The second portion is disposed between the fourth portion of the light scattering layer and the second electrode. The fifth portion of the light scattering layer overlays the interconnection layer. The light scattering layer does not overlay the first portion when projected to the plane.
摘要:
According to one embodiment, an illumination device includes an anode, a metal layer, a cathode, an organic electroluminescent unit, first and second insulating layers, and a plurality of conductive piercing layers. The metal layer has an electrical resistance lower than that of the anode. The cathode is provided between the anode and the metal layer. The organic electroluminescent unit is provided between the anode and the cathode. The first insulating layer is provided between the cathode and the metal layer. The conductive piercing layers pierce the organic electroluminescent unit, the cathode, and the first insulating layer along a direction from the anode toward the metal layer to electrically connect the anode to the metal layer, and are separate entities from the metal layer. The second insulating layer is provided between the organic electroluminescent unit and the conductive piercing layers and between the cathode and the conductive piercing layers.
摘要:
According to one embodiment, there is provided an organic light-emitting diode including an anode and a cathode which are arranged apart from each other, an emissive layer arranged between the anode and the cathode including a blue emissive layer located at the anode side and a green and red emissive layer located at the cathode side, the blue emissive layer containing a host material and a blue fluorescent dopant, and the green and red emissive layer containing a host material and a green phosphorescent dopant and/or a red phosphorescent dopant.
摘要:
According to one embodiment, an organic electroluminescent device includes first and second electrodes, an interconnection layer, an organic light emitting layer and a light scattering layer. The first electrode has includes first, second and third portions. The interconnection layer is electrically connected to the first electrode. The third portion overlays the interconnection layer when projected to the plane. The first and second portions do not overlay the interconnection layer. The second electrode overlays the second portion and does not overlay the first and the third portions. The organic light emitting layer is provided between the second portion and the second electrode. The second portion is disposed between the fourth portion of the light scattering layer and the second electrode. The fifth portion of the light scattering layer overlays the interconnection layer. The light scattering layer does not overlay the first portion when projected to the plane.
摘要:
According to one embodiment, an illumination device includes an anode, a metal layer, a cathode, an organic electroluminescent unit, first and second insulating layers, and a plurality of conductive piercing layers. The metal layer has an electrical resistance lower than that of the anode. The cathode is provided between the anode and the metal layer. The organic electroluminescent unit is provided between the anode and the cathode. The first insulating layer is provided between the cathode and the metal layer. The conductive piercing layers pierce the organic electroluminescent unit, the cathode, and the first insulating layer along a direction from the anode toward the metal layer to electrically connect the anode to the metal layer, and are separate entities from the metal layer. The second insulating layer is provided between the organic electroluminescent unit and the conductive piercing layers and between the cathode and the conductive piercing layers.
摘要:
According to one embodiment, there is provided an organic light-emitting diode including an anode and a cathode arranged apart from each other, an emissive layer arranged between the anode and the cathode, a hole injection layer arranged between the anode and the emissive layer and including a polyethylenedioxythiophene, and a hole-transport layer arranged between the hole injection layer and the emissive layer and including a hole-transport material. The emissive layer includes a cathode side first area including a hole transport host material, an electron transport host material and an emitting dopant, and an anode side second area including the hole transport host material and no electron transport host material.