Abstract:
According to one embodiment, there is provided an organic light-emitting diode including an anode and a cathode which are arranged apart from each other, a red and green emissive layer on the anode side and a blue emissive layer on the cathode side, which are arranged to be separated from each other between the anode and the cathode, and a spacer layer which is inserted between the red and green emissive layer and the blue emissive layer, and consists of a hole transport material which prevents energy transfer from the blue emissive layer to the red and green emissive layer. The red and green emissive layer contains a host material having hole transportability, a red phosphorescent emitting dopant, and a green phosphorescent emitting dopant, and the blue emissive layer contains a host material having electron transportability and a blue fluorescent emitting dopant.
Abstract:
According to one embodiment, there is provided a compound represented by Formula (1): where Cu+ represents a copper ion, PR1R2R3 is a phosphine compound coordinating with Cu+, where R1, R2 and R3 may be the same or different, and represent a linear, branched or cyclic alkyl group having 1-6 carbon atoms or an aromatic cyclic group which may have a substituent, R4 is an electron-donating substituent and X− represents a counter ion where X is at least one selected from the group consisting of F, Cl, Br, I, BF4, PF6, CH3CO2, CF3CO2, CF3SO3 and ClO4.
Abstract translation:根据一个实施方案,提供由式(1)表示的化合物:其中Cu +表示铜离子,PR1R2R3是与Cu +配位的膦化合物,其中R1,R2和R3可以相同或不同,并且表示线性 具有1-6个碳原子的支链或环状烷基或可以具有取代基的芳族环状基团,R4是给电子取代基,X表示其中X是选自F ,Cl,Br,I,BF 4,PF 6,CH 3 CO 2,CF 3 CO 2,CF 3 SO 3和ClO 4。
Abstract:
According to one embodiment, an organic light-emitting diode includes an anode and a cathode arranged apart from each other, an emission layer, arranged between the anode and cathode, containing a host material of polyvinyl(2,7-difluorocarbazole), a blue-emitting phosphorescent material, and an electron transport material, and a hole transport layer of polyvinylcarbazole arranged adjacent to the emission layer on an anode side.
Abstract:
An electrophotographic device includes a control section configured to control operations of a charging unit, an exposure unit, and other units to satisfy a desired condition.
Abstract:
According to one embodiment, there is provided an organic light-emitting diode including an anode and a cathode which are arranged apart from each other, and an emissive layer interposed between the anode and the cathode and including a host material and an emitting dopant. The host material includes a polymer containing dibenzothiophene backbones represented by the following formula (1) as repeating units: wherein n is an integer of from 20 to 10,000.
Abstract:
A method of manufacturing a light emitting device. The method includes: mounting a light emitting chip on a substrate; forming a transparent resin portion and a phosphor layer by using a liquid droplet discharging apparatus, the transparent resin portion being formed in a shape of a dome and covering the light emitting chip to fill an exterior thereof on the substrate, a phosphor layer containing phosphor and being formed on an exterior of the transparent resin portion close to at least a top side thereof; and forming a reflecting layer at a position exterior of the transparent resin portion and the phosphor layer close to the substrate.
Abstract:
According to one embodiment, there is provided an organic light-emitting diode including an anode and a cathode arranged apart from each other, and an emissive layer interposed between the anode and the cathode and including a host material and an emitting dopant. The emitting dopant includes a copper complex represented by the formula (1): where Cu+ represents a copper ion, the ligand A represents a pyridine derivative having nitrogen as a coordinate element and may have a substituent, PR1R2R3 is a phosphine compound coordinating with Cu+, where R1, R2 and R3 may be the same or different, and represent a linear, branched or cyclic alkyl group having 6 or less carbon atoms or an aromatic cyclic group which may have a substituent, and X− represents a counter ion (counterion) where X represents F, Cl, Br, I, BF4, PF6, CH3CO2, CF3CO2, CF3SO3 or ClO4.
Abstract translation:根据一个实施例,提供了一种包括彼此分开布置的阳极和阴极的有机发光二极管和插在阳极和阴极之间并包括主体材料和发射掺杂剂的发射层。 发光掺杂剂包括由式(1)表示的铜络合物:其中Cu +表示铜离子,配体A表示以氮为坐标元素的吡啶衍生物,可以具有取代基,PR1R2R3为与Cu +配位的膦化合物, 其中R1,R2和R3可以相同或不同,表示具有6个或更少碳原子的直链,支链或环状烷基或可以具有取代基的芳族环状基团,X-表示抗衡离子(抗衡离子) 其中X表示F,Cl,Br,I,BF 4,PF 6,CH 3 CO 2,CF 3 CO 2,CF 3 SO 3或ClO 4。
Abstract:
Disclosed is a production process of an electronic circuit that can efficiently form a highly accurate electrically conductive pattern. The production process comprises the steps of: adhering insulating particles onto an electrically conductive base material to form an insulating pattern comprising a pattern region and a nonpattern region on the electrically conductive base material; adhering electrically conductive particles to the nonpattern region by first electrophoretic treatment; removing the pattern region by second electrophoretic treatment; and transferring the electrically conductive particles onto a recording medium to form an electrically conductive pattern of the electrically conductive particles onto the recording medium.
Abstract:
An inkjet recording apparatus includes: a head unit including: an ultrasonic wave generation unit that generates ultrasonic waves; an ultrasonic wave focus unit that focuses the ultrasonic waves to an ultrasonic wave focus position; an ultrasonic wave transmission unit that propagates the ultrasonic waves from the ultrasonic wave focus unit; and a wall plate that covers the ultrasonic wave generation unit, the ultrasonic wave focus unit and the ultrasonic wave transmission unit; an annular film that rotates while sliding along an exterior of the head unit; a film drive mechanism that rotates the film; and an ink application unit that applies ink over the film to form an ink layer, wherein the ultrasonic wave focus position of the head unit is directing to a position of the ink layer so as to eject an ink from the ink layer.
Abstract:
It is made possible to form an interelectrode gap with high precision, without a decrease in the simplicity and convenience of the process to be carried out by an ink jet technique. A method for manufacturing an electronic device, includes: applying a water repellent agent onto a substrate by an ink jet technique to form a water repellent region on the substrate; dropping a solution containing a conductive ink material along edges of the water repellent region on the substrate by the ink jet technique to form a source electrode and a drain electrode; and forming a semiconductor layer to cover the water repellent region, the source electrode, and the drain electrode.