摘要:
By combining a plurality of encoding methods actively, an encoding efficiency is enhanced. The first encoder encodes a result of determination whether a prediction error is zero or not. The second encoder encodes the prediction error unless the prediction error is zero. The third encoder encodes the prediction error regardless of whether the prediction error is zero or not. The mode determinator determines the encoding mode, and the encoding controller selectively operates the first encoder, the second encoder, and the third encoder according to the encoding mode determined.
摘要:
A prediction value is previously set in an MPS table corresponding to a state number, a state number for an encoding pixel is obtained from a STATE table, the prediction value is determined based on the MPS table using the state number, a pixel-to-symbol converter compares the prediction value and the encoding pixel to obtain a symbol, and an arithmetic encoder obtains an LPS interval from an LSZ table using the state number for the encoding pixel, and the arithmetic encoder implements encoding based on the symbol and the LPS interval.
摘要:
A coding system comprises the comparing circuit which compares a magnitude of the range on the number line which is allocated to the most probability symbol with a magnitude of the fixed range on the number line which is allocated to the Less Probability Symbol. If the range allocated to the MPS is smaller than that to the LPS, and when the symbol is the MPS, the range allocated to the LPS is generated. If the range allocated to the MPS is smaller than that to the LPS, and when the symbol is the LPS, the range allocated to the MPS is generated. By the system, a coding efficiency is improved especially when a probability of occurrence of LPS (Less Probability Symbol) is approximate to 1/2.
摘要:
The present invention aims to increase an encoding efficiency when the occurrence probability of LPS (less probable symbol) is low. An encoding apparatus has a interval size (A), a interval limit value (C), divides a set interval which is set on a number line, selects a sub-interval corresponding to an occurring symbol, updates the interval size (A) and the interval limit value (C) with a limited precision based on the selected sub-interval size, and encodes a coordinate within the interval. Based on the probability (the occurrence probability of symbol) output from a learning memory, the sub-interval size (LSZ, dLSZ) and the sub-interval limit value are obtained. A correction value calculator computes the correction value based on the dLSZ, reflects the computed correction value (dA, dC) to the renormalized subinterval size (rA) and the renormalized sub-interval limit value (rC), updates the interval size (A7) to the sub-interval size, updates the interval limit value (C8) to the sub-interval limit value, and outputs a code.
摘要:
In an adaptive probability estimation method, an index referring to coding parameters is determined according to occurrence probabilities of symbols from estimated occurrence counts of symbols, thresholds for probability values that determine the probability intervals corresponding to the indexes are set to values that are examined with small operational load, and an index referring to the corresponding occurrence probability is selected without division, using the probability intervals determined by the thresholds for probability values.
摘要:
An image memory outputs a target encoding pixel and a plurality of reference pixels in the vicinity thereof. A boundary mode determining unit determines a maximum value and a minimum value of the reference pixels, determines an average value of the maximum value and the minimum value, compares the respective reference pixel values with the average value, detects a boundary in the target encoding pixel and the reference pixels based on comparison results, and detects a pixel distribution state of the reference pixels based on the detected boundary. An adaptive predictor calculates a prediction value by performing a calculation based on a function corresponding to the pixel distribution state and the reference pixels. A prediction difference calculating unit determines a difference value between the prediction value and a value of the target encoding pixel. A prediction coincidence determining unit compares the prediction value and the target encoding pixel value, and outputs a comparison result as a binary signal. A context generator generates a context based on the pixel distribution state and the difference value of the prediction difference calculating unit. An arithmetic encoder encodes the binary signal based on the context thus generated.
摘要:
A coding method of a binary Markov information source comprises the steps of providing a range on a number line from 0 to 1 which corresponds to an output symbol sequence from the information source, and performing data compression by binary expressing the position information on the number line corresponding to the output symbol sequence. The present method further includes the steps of providing a normalization number line to keep a desired calculation accuracy by expanding a range of the number line which includes a mapping range, by means of a multiple of a power of 2, when the mapping range becomes below 0.5 of the range of the number line; allocating a predetermined mapping range on the normalization number line for less probable symbols LPS proportional to its normal occurrence probability; allocating the remaining mapping range on the normalization number line for more probable symbols MPS; and reassigning the predetermined mapping range to the remaining mapping range the half of a portion where the allocated remaining range is less than 0.5, when the allocated remaining range becomes below 0.5.
摘要:
Although data is transmitted with efficiency by an arithmetic encoding system, the number of carry control signals increases in proportion to the number of consecutive bits "1" s or bytes X`FF` s in a conventional system. In the present invention, an arithmetic encoder 302 `detects the possibility of a carry generated during arithmetic coding operation being propagated beyond at least a predetermined number of consecutive bytes X`FF` s in a supplied arithmetic code 315. When the propagation of the carry is impossible, a carry control signal is inserted into the first 2 bits of the byte other than X`FF` which occurs immediately after the consecutive bytes X`FF` s so as to transmit the presence or absence of a carry. An arithmetic decoder 303 detects the continuation of at least a predetermined number of bytes X`FF` s in the arithmetic code 315, and arithmetically decodes an output value YN316 on the basis of the predicted value MPS317 of the occurrence probability of the output value YN316 to be encoded and the region width Qe of the complementary predicted value LPS. Since the number of total bits of the inserted carry control signals is reduced by this "one-time 2-bits insertion system", the total number of transmitted code bits is also reduced.
摘要:
Provided is a frame configuration usable for both SISO transmission and MISO and/or MIMO transmission. A frame configurator of a transmission device configures a frame by gathering data for SISO and configures a frame by gathering data for MISO and/or MIMO data, thereby to improve the reception performance (detection performance) of a reception device.
摘要:
In order to implement both a physical later pipe (PLP) structure and a plurality of receiver classes, a transmitting apparatus includes: a signaling information generation unit which generates signaling information including a transmission parameter for each of PLPs; a PLP processing group which performs processing based on the transmission parameter for each of the PLPs; and a transmitting unit which transmits data including the generated signaling information and PLP data for each of the PLPs. The PLP data is received by a receiving apparatus that is indicated by a flag of the PLP and is not received by another receiving apparatus, the receiving apparatuses being included in a plurality of receiving apparatuses classified under a plurality of states. The generated signaling information includes, as the transmission parameter for each of the PLPs, the flag of the PLP.