Abstract:
An inverter-integrated electric compressor is structured to include a suction refrigeration path (61) for intensively flowing a sucked refrigerant (30) therethrough, such that the suction refrigerant path (61) is provided only in the vicinity of a switching device module (105), which is a main heat source in an inverter device portion (101), so that the sucked refrigerant is concentrated in only the vicinity of the switching device module, which is the main heat source in the inverter device portion. This enables effectively cooling the inverter device portion, with the sucked refrigerant, without involving adjustments of operating conditions for a refrigeration cycle.
Abstract:
A core rod is inserted into a cladding pipe, moisture in a space between the core rod and the cladding pipe is removed, and an optical fiber is drawn while the space is connected to a dry-gas atmosphere and/or being decompressed and while the core rod and the cladding pipe are being unified with each other. Alternatively, the core rod is inserted into the cladding pipe, and an optical fiber is drawn from one end while moisture on the surface of the core rod and the internal surface of the cladding pipe is being removed. Accordingly, a high quality optical fiber is manufactured with good productivity.
Abstract:
An image forming one which is capable of shortening the first copy time and equalizing the image qualities of a plurality of all output copies when a plurality of copies of the original document are output using the memory copy function is provided. An image data of each one line of an original document is sequentially read by a scanner unit. Whenever the image data of a given portion of the original document less than one page thereof (for example, image data of 8 lines) is accumulated, it is subjected to irreversible compression in a compressing circuit. The irreversible compressed image data which is obtained by this irreversible compression is sequentially stored in a storage area of an image memory or HDD and thereafter is sequentially decompressed in a decompressing circuit. Image forming is sequentially conducted based upon the sequentially decompressed image data in a printing device.
Abstract:
High purity magnesium oxide fine particles are produced by introducing a flow of a magnesium vapor-containing gas and a flow of an inert gas separately into a mixing region to provide a flow of a mixture gas; by introducing the flow of the mixture gas into an oxidizing region while a flow of a molecular oxygen-containing gas is introduced into the oxidizing region concurrently with the flow of the mixture gas; to provide a flow of a reaction mixture in which the magnesium vapor is oxidized, by introducing the flow of the reaction mixture containing the resultant magnesium oxide fine particles into a collecting region; and, by collecting the magnesium oxide particles from the reaction mixture by, for example, a filter located in the collecting region.