Abstract:
A core rod is inserted into a cladding pipe, moisture in a space between the core rod and the cladding pipe is removed, and an optical fiber is drawn while the space is connected to a dry-gas atmosphere and/or being decompressed and while the core rod and the cladding pipe are being unified with each other. Alternatively, the core rod is inserted into the cladding pipe, and an optical fiber is drawn from one end while moisture on the surface of the core rod and the internal surface of the cladding pipe is being removed. Accordingly, a high quality optical fiber is manufactured with good productivity.
Abstract:
A joining method of an aluminum member to a dissimilar metal member excluding copper by brazing or soldering through the use of a brazing filler metal or a solder for aluminum member; in which a plating composed of a metal voluntarily selected from copper, aluminum, zinc, lead, silicon, cadmium, tin and an alloy having major component of two or more kinds of them, is previously applied on a surface of joined portion of the dissimilar metal member, the plated joined portion of the dissimilar metal member is dipped in a molten brazing filler metal or a molten solder and ultrasonic vibration is given to the joined portion to stick the brazing filler metal or the solder to the joined portion, and a brazing or a soldering is carried out thereafter.
Abstract:
A core rod is inserted into a cladding pipe, moisture in a space between the core rod and the cladding pipe is removed, and an optical fiber is drawn while the space is connected to a dry-gas atmosphere and/or being decompressed and while the core rod and the cladding pipe are being unified with each other. Alternatively, the core rod is inserted into the cladding pipe, and an optical fiber is drawn from one end while moisture on the surface of the core rod and the internal surface of the cladding pipe is being removed. Accordingly, a high quality optical fiber is manufactured with good productivity.
Abstract:
An object of the present invention is to provide a method of highly purifying a glass body, which enables high purification of the glass body while decreasing deformation of the glass body at a high degree, to provide a highly purified glass body, and to provide a method and an apparatus for manufacturing a glass tube, which can obtain a highly purified glass tube. A method of highly purifying a glass body according to the present invention is to apply a voltage between electrodes 1 and 2, which make contact with the glass pipe 11, in a nearly radial direction of the glass pipe 11 while heating the glass pipe 11 to a temperature within a range less than 1300° C. Further, a method of manufacturing a glass tube according to the invention is to generate a voltage gradient in a radial direction of a glass tube 106 by applying voltages to the inner circumferential side and the outer circumferential side of the glass tube 106 when a glass rod 103 is gradually formed into the glass tube 106 by heating the glass rod 103 to soften the glass rod 103 and by bringing a boring jig 130 into contact with a softened portion of the glass rod 103.
Abstract:
An evaporator for refrigerators and the like, comprising a sheet and at least one refrigerant flow passage assembly which includes a multi-passage unit having a plurality of parallel flow passages, an inlet header pipe connected to the inlet openings of the flow passages and an outlet header pipe connected to the outlet openings of the flow passages. The sheet which carries on one surface thereof the passage assembly or assemblies is bent to form a rectangular box-like structure of a cooler for a freezing chamber formed in the refrigerators.
Abstract:
In a method of manufacturing the glass tube of the invention, a glass tube having an inner diameter of a predetermined size is formed by forming a softened portion by heating a glass material and inserting an inner forming member to the softened portion. An outer diameter of the softened portion is formed into an outer diameter of a predetermined size by bringing an outer forming member movable in a direction orthogonal to a longitudinal direction axis of the glass material into contact with an outer circumference of the softened portion.
Abstract:
A heat-pipe device for transferring heat generated by a heat-generating element, having at least one heat-pipe body which is an extrudate of plate-like configuration made of aluminum or its alloy, the heat-pipe body including a planer-structure portion which has on one side thereof a flat face to which the heat-generating element is directly fixed, the heat-pipe body further including a plurality of passage-defining portions which protrude from the other side of the planer-structure portion and extend parallel to, and apart a predetermined distance from, each other, each passage-defining portion having therein a flow passage which is fluid-tightly charged with a working fluid for transferring the heat generated by the heat-generating element. Also is disclosed a heat-sink device for cooling a heat-generating element, having at least one heat-pipe body including a planer-structure portion and a plurality of passage-defining portions. The heat-sink device may further have a header pipe, and the heat-pipe body may be bent to form a box-like configuration such that the longitudinal ends of flow passages within the passage-defining portions are open in a communication passage within the header pipe. The heat-sink device may further have a first and second header pipe, and the heat-pipe body may be disposed vertical such that the flow passages run in a horizontal direction and are open in a first and second communication passages within the first and second header pipes.