-
公开(公告)号:US20220193899A1
公开(公告)日:2022-06-23
申请号:US17488341
申请日:2021-09-29
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Hongge Wang , Chunyu Chen , Yizhang Liu , Ligang Ge , Jie Bai , Xingxing Ma , Jiangchen Zhou , Youjun Xiong
Abstract: A pose control method for a robot includes: estimating a first set of joint angular velocities of all joints of the robot according to a balance control algorithm; estimating a second set of joint angular velocities of all joints of the robot according to a momentum planning algorithm; estimating a third set of joint angular velocities of all joints of the robot according to a pose return-to-zero algorithm; and performing pose control on the robot according to the first set of joint angular velocities, the second set of joint angular velocities, and the third set of joint angular velocities.
-
公开(公告)号:US20210162595A1
公开(公告)日:2021-06-03
申请号:US16932872
申请日:2020-07-20
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Jie Bai , Ligang Ge , Yizhang Liu , Hongge Wang , Jianxin Pang , Youjun Xiong
Abstract: The present disclosure provides a foot-waist coordinated gait planning method and an apparatus and a robot using the same. The method includes: obtaining an orientation of each foot of the legged robot, and calculating a positional compensation amount of each ankle of the legged robot based on the orientation of the foot; obtaining an orientation of a waist of the legged robot, and calculating a positional compensation amount of each hip of the legged robot based on the orientation of the waist; calculating a hip-ankle positional vector of the legged robot; compensating the hip-ankle positional vector based on the positional compensation amount of the ankle and the positional compensation amount of the hip to obtain the compensated hip-ankle positional vector; and performing an inverse kinematics analysis on the compensated hip-ankle positional vector to obtain joint angles of the legged robot.
-
公开(公告)号:US20200156721A1
公开(公告)日:2020-05-21
申请号:US16452532
申请日:2019-06-26
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: YOUJUN XIONG , Chunyu Chen , Yizhang Liu , Ligang Ge , Jianxin Pang
IPC: B62D57/032
Abstract: The present disclosure provides a robot gait planning method and a robot with the same. The method includes: obtaining, through the sensor set, force information of feel of the robot under a force applied by a target object; calculating coordinates of zero moment points of the feet of the robot with respect to a centroid of a body of the robot based on the force information; and determining a gait planning result for the robot based on the coordinates of the zero moment points with respect to the centroid of the body. The present disclosure is capable of converting the force of the target object to the zero moment points, and using the zero moment points to perform the gait planning, so that the robot follows the target object in the case that the robot is subjected to a force of the target object.
-
公开(公告)号:US20190204848A1
公开(公告)日:2019-07-04
申请号:US16172838
申请日:2018-10-28
Applicant: UBTECH Robotics Corp
Inventor: Youjun Xiong , Ligang Ge , Chunyu Chen , Yizhang Liu , Zheng Xie , Zhaohui An , Jinghua Tang
CPC classification number: G05D1/0268 , B25J9/106 , B25J9/1615 , B25J13/08 , B25J17/00 , B62D57/032 , G05D1/0891 , G05D2201/0217
Abstract: The present disclosure relates to robot technology, which provides a gait control method, device, and terminal device for a biped robot. The method includes: planning art initial position of an ankle joint of the biped robot and a rotation angle a sole of the biped robot to rotate around one of a toe and a heel of the biped robot; planning a body pose of the biped robot; calculating a target position of the ankle joint based on the initial position of the ankle joint and the rotation angle of the sole; obtaining a joint angle, of each of a plurality of joints of the biped robot by performing an operation on the body pose and the target position of the ankle joint utilizing an inverse kinematics algorithm; and adjusting a gait of the biped robot based on the joint angle of each of the joints.
-
公开(公告)号:US20190118385A1
公开(公告)日:2019-04-25
申请号:US16140541
申请日:2018-09-25
Applicant: UBTECH Robotics Corp
Inventor: Youjun Xiong , Chunyu Chen , Yizhang Liu , Ligang Ge
IPC: B25J13/08 , B25J17/00 , B62D57/032
Abstract: The present disclosure relates to robot technology, which provides a footed robot landing control method and device. The method includes: detecting a landing motion state of the robot; if the landing motion state is a flight phase descending state, a motion of the foot portion of the robot with respect to a ground in the flight phase descending state is controlled based on a relative speed; if the landing motion state is a support phase landing state, a motion of joints of the robot in the support phase landing state is controlled based on a first expected joint torque. The present disclosure is capable of reducing the impact of the foot portion against the ground, thereby realizing the flexible control of the landing process of the footed robot in a simple and rapid manner and reducing the cost of the footed robot.
-
公开(公告)号:US12179364B2
公开(公告)日:2024-12-31
申请号:US17566726
申请日:2021-12-31
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Dake Zheng , Yizhang Liu , Jianxin Pang , Huan Tan , Youjun Xiong
IPC: B25J9/16
Abstract: A motion trajectory planning method for a robotic manipulator having a visual inspection system, includes: in response to a command instruction, obtaining environmental data collected by the visual inspection system; determining an initial DS model motion trajectory of the robotic manipulator according to the command instruction, the environmental data, and a preset teaching motion DS model library, wherein the teaching motion DS model library includes at least one DS model motion trajectory generated based on human teaching activities; and at least based on a result of determining whether there is an obstacle, whose pose is on the initial DS model motion trajectory, in a first object included in the environmental data, correcting the initial DS model motion trajectory to obtain a desired motion trajectory of the robotic manipulator.
-
公开(公告)号:US20240181633A1
公开(公告)日:2024-06-06
申请号:US18075450
申请日:2022-12-06
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: XIANWEN ZENG , Yizhang Liu , Xuan Luo , Youjun Xiong
IPC: B25J9/16
CPC classification number: B25J9/1607 , B25J9/1612 , B25J9/1633 , B25J9/1653 , B25J9/1664
Abstract: A robot control method, a robot, and a computer-readable storage medium are provided. The method includes: obtaining a trajectory planning parameter of joint(s) of the robot, force data of an end of the robot, and force data of the joint(s); obtaining an end admittance compensation amount; determining a first joint parameter and a first slack variable corresponding to the end admittance compensation amount in a joint space of each of the joint(s) based on the end admittance compensation amount and the trajectory planning parameter, obtaining a joint admittance compensation amount; determining a second joint parameter based on the first joint parameter, the first slack variable, the joint admittance compensation amount, and the trajectory planning parameter; determining a target joint commanding position based on the second joint parameter; and controlling the robot to move according to the target joint commanding position.
-
公开(公告)号:US11992946B2
公开(公告)日:2024-05-28
申请号:US17553758
申请日:2021-12-16
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Yizhang Liu , Youjun Xiong , Xuan Luo , Xianwen Zeng , Ligang Ge , Chunyu Chen
IPC: B25J9/16
CPC classification number: B25J9/1651 , B25J9/1607
Abstract: A joint acceleration planning method, a redundant robot using the same, and a computer readable storage medium are provided. The method includes: obtaining an optimization objective function, a joint acceleration inequation constraint function and a joint acceleration equation constraint function corresponding to the optimization target from a quadratic programming function library, where the optimization objective function is an objective function obtained based on the upper and lower limits of the optimization target and a Euclidean distance algorithm; and obtaining a joint acceleration planning result by performing a quadratic optimization solving on a joint acceleration of each of the target joints of the robot at time k according to the end Cartesian space speed at time k+1, the joint parameter set of the target joints of the robot at time k, the sampling period, the optimization objective function, the joint acceleration inequation constraint function, and the joint acceleration equation constraint function.
-
19.
公开(公告)号:US11904472B2
公开(公告)日:2024-02-20
申请号:US17504544
申请日:2021-10-19
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Jie Bai , Ligang Ge , Yizhang Liu , Youjun Xiong
CPC classification number: B25J9/1646 , B25J9/1651 , B25J9/1653 , B25J9/1664 , B25J13/088
Abstract: A humanoid robot control method, a mobile machine using the same, and a computer readable storage medium are provided. The method includes: mapping posture information of leg joints of a human body to leg joint servos of a humanoid robot to obtain an expected rotation angle and an expected rotation angular velocity of non-target optimized joint servos of the leg joint servos and an expected rotation angle and an expected rotation angular velocity of target optimized joint servos of the leg joint servos; obtaining an optimization objective function corresponding to the target optimized joint servos of the leg joint servos; optimizing the expected rotation angle and the expected rotation angular velocity of the target optimized joint servos to obtain a corrected expected rotation angle and a corrected expected rotation angular velocity of the target optimized joint servos; and controlling each of the leg joint servos of the humanoid robot.
-
20.
公开(公告)号:US11878426B2
公开(公告)日:2024-01-23
申请号:US17314039
申请日:2021-05-06
Applicant: UBTECH ROBOTICS CORP LTD
Inventor: Xingxing Ma , Chunyu Chen , Ligang Ge , Hongge Wang , Mingqiang Huang , Jiangchen Zhou , Yizhang Liu , Zheng Xie , Youjun Xiong
IPC: B25J9/16
CPC classification number: B25J9/1666 , B25J9/162 , B25J9/1653
Abstract: A biped robot gait control method as well as a robot and a computer readable storage medium are provided. During the movement, the system obtains a current supporting pose of a current supporting leg of the biped robot, and calculates a relative pose between the supporting legs based on the current supporting pose and a preset ideal supporting pose of a next step. The system further calculates modified gait parameters of the next step based on the relative pose between the two supporting legs and a joint distance between left and right ankle joints in an initial state of the biped robot when standing. Finally, the system controls the next supporting leg to move according to the modified gait parameters.
-
-
-
-
-
-
-
-
-