Abstract:
A fixture assembly including a first fixture portion; a second fixture portion that interfaces with the first fixture portion; and a bladder assembly mounted to the second fixture portion to face the first fixture portion. A method of manufacturing a fan blade includes inserting a blade body and a cover into a fixture; and deploying a bladder assembly within the fixture to press the cover into the blade body.
Abstract:
An airfoil for a gas turbine engine according to an example of the present disclosure includes, among other things, an airfoil body extending between leading and trailing edges in a chordwise direction and extending from a root section in a spanwise direction, and the airfoil body defining pressure and suction sides separated in a thickness direction. The airfoil body defines a recessed region extending inwardly from at least one of the pressure and suction sides, and the airfoil body includes one or more ribs that define a plurality of pockets within a perimeter of the recessed region. A plurality of cover skins is welded to the airfoil body along the one or more ribs to enclose respective ones of the plurality of pockets. The plurality of cover skins formed from a common cover having a perimeter that is dimensioned to mate with the perimeter of the recess. A method of forming a gas turbine engine component is also disclosed.
Abstract:
An airfoil for a gas turbine engine according to an example of the present disclosure includes, among other things, an airfoil body defining a recessed region and including at least one rib dimensioned to loop about a respective pocket within a perimeter of the recessed region. At least one cover skin is welded to the airfoil body along the at least one rib to enclose the recessed region. The at least one cover skin is welded to the at least one rib along a respective weld path. The weld path defines a weld width, the at least one rib defines a rib width, and a ratio of the weld width to the rib width is equal to or greater than 3:1 for each position along the weld path. A method of forming a gas turbine engine component is also disclosed.
Abstract:
A directional translating clamping device comprises a housing that includes a distal housing end and proximate housing end separated along a central axis, and a housing recess at the proximate housing end and extending along the central axis end. The device also includes a slide located in the housing recess, and the slide comprises a slide recess at a slide proximate end co-axial with the housing recess, and a detent in a radial sidewall of the slide prevents the slide from translating beyond a predetermined axial distance along the central axis. A spring is located in the housing recess and exerts an axial force on the distal end of the slide. A stub shaft extends from the distal end of the housing. A roller ball assembly includes a threaded sidewall that engages with the slide recess to removably and replaceably secure the roller ball assembly to the slide.
Abstract:
A fixture assembly includes a first fixture portion, a second fixture portion that interfaces with the first fixture portion, and a sub-fixture movably mounted to the first fixture portion. A multiple of actuators selectively move the sub-fixture toward the second fixture portion. A method of manufacturing a fan blade includes deploying the sub-fixture from the first fixture portion to effectuate a peripheral diffusion bond to join the blade body and the cover of the fan blade.
Abstract:
A method of manufacturing an airfoil includes creating a plurality of cavities separated by a plurality of internal ribs in an airfoil forging. At least one hole is drilled in at least one of the plurality of internal ribs with a waterjet drilling tool. At least one hole extends perpendicularly to a wall of the rib.
Abstract:
A method of forming a gas turbine engine component according to an example of the present disclosure includes, among other things, attaching a cover skin to an airfoil body, the airfoil body and the cover skin cooperating to define pressure and suction sides of an airfoil, and moving the airfoil in a forming line including a plurality of stations. The plurality of stations include a set of heating stations, a deforming station and a set of cool down stations. The moving step includes positioning the airfoil in the set of heating stations to progressively increase a temperature of the airfoil, then positioning the airfoil in the deforming station including causing the airfoil to deform between first and second dies, and then positioning the airfoil in the set of cool down stations to progressively decrease the temperature of the airfoil.
Abstract:
An airfoil may include an airfoil body, a cover, and a stud. The cover may be disposed on at least one of a suction side and a pressure side of the airfoil body and the stud may extend through the cover and into the airfoil body and the stud may be is joined to the airfoil body and the cover by a friction weld.
Abstract:
A repaired article includes a body extending between a first side and a second side. The body has a repair section with an associated thickness between the first side and the second side. The repair section includes regions of plastic deformation distributed through the thickness. A gas turbine engine including the body is also disclosed.
Abstract:
A gas turbine airfoil having internal cooling passages is formed by additive manufacturing. Layers of superalloy powder are fused by an energy beam using a two-dimensional pattern providing unmelted areas forming passageways therein. Layers of the powder are added and fused using sufficient two-dimensional patterns to form the entire airfoil with the desired pattern of internal cooling passages. After completion of the formation of the airfoil, it may be hot isostatic pressed, directionally recrystallized, bond coated, and covered with a thermal barrier layer.