Abstract:
A mid-turbine frame for a gas turbine engine includes an inner frame case that includes a bolt opening and at least one spoke for connecting an outer frame case to the inner frame case that includes an inlet passage that extends in a radial direction. A central bolt extends through the bolt opening for securing at least one spoke to the inner frame case.
Abstract:
An interface within a gas turbine engine includes a sealing surface defined by a portion of a vane platform. A seal is in contact with said sealing surface. A barrier is transverse to the sealing surface.
Abstract:
A vane has an airfoil extending between a radially outer platform and a radially inner platform. At least one of the platforms has nominally radially thinner portions, and a pad defining a radially thicker portion. The pad has a radial thickness that is greater than a thickness of the nominal radially thinner portions. The pad surrounds an outer periphery of the airfoil on a side of the radially outer platform. The pad has a varying radial thickness. A mid-turbine frame and a gas turbine engine are also disclosed.
Abstract:
A method of cooling a portion of a gas turbine engine includes positioning a tie rod relative to an inner frame case. The tie rod includes a bushing opening and the inner frame case includes a fastener opening. A fastener is secured through the fastener opening in the inner frame case to a threaded bushing located in the bushing opening. The threaded bushing includes a distal end that forms a clearance gap with the inner frame case. Heat is transferred from the fastener through the threaded bushing to prevent the fastener from creeping.
Abstract:
A mid-turbine frame assembly includes an inner frame case which includes a first plurality of holes and a second plurality of holes. A plurality of tie rods is circumferentially spaced around the inner frame case and includes an inlet passage that is aligned with the first plurality of holes. A plurality of hollow airfoils is aligned with the second plurality of holes.
Abstract:
An airfoil extends between radially inner and radially outer platforms. The airfoil extends between a leading edge and a trailing edge, and merges into facing surfaces of the radially inner and outer platforms. A variable fillet merges a facing surface of one of the radially inner and outer platforms into a wall of the airfoil. The variable fillet has a length extending away from a surface of the airfoil and a height extending away from the facing surface of at least one of the radially inner and outer platforms outwardly on to the airfoil. The variable fillet has a greater length at one of the leading edge and the trailing edge. A spaced portion has a shorter length at locations spaced from at least one of the leading and trailing edges. A mid-turbine frame and a gas turbine engine are also disclosed.
Abstract:
A mid-turbine frame (MTF) system for a gas turbine engine is disclosed. The MTF includes an inner case, an outer case and a fairing sandwiched between the inner and outer cases. The fairing includes an inner ring spaced apart from and coupled to an outer ring by a plurality of hollow struts. The hollow struts accommodate support rods that connect the inner case to the outer case. Further, the hollow struts act as turning vanes for turning the flow of gases passing from a high pressure turbine (HPT) to a low pressure turbine (LPT) for purposes of providing the correct incidence angle to the first vane of the LPT. The outer ring of the fairing includes a plurality of bosses which receive attachment pins that pass through the outer case for correctly locating the fairing with respect to the outer case and for permitting radial expansion in contraction of the fairing.
Abstract:
A turbine engine includes a compressor section, a combustor section in fluid communication with the compressor section, a high pressure turbine in fluid communication with the combustor, a low pressure turbine in fluid communication with the high pressure turbine, and a mid turbine frame located axially between the high pressure turbine and the low pressure turbine. The mid turbine frame includes an outer frame case, an inner frame case, and a plurality of hollow spokes that distribute loads from the inner frame case to the outer frame case. The spokes are hollow to allow cooling airflow to be supplied through the spokes to the inner frame case.
Abstract:
A method of assembling a mid-turbine frame includes engaging at least two tabs in a radially inner end of at least one spoke in a groove in an inner frame case. The at least one spoke is secured to the inner frame case with a central bolt extending through the inner frame case into the at least one spoke.
Abstract:
A fastener assembly includes a first component that includes a bushing opening. A second component includes a fastener opening. A threaded bushing is at least partially located within the bushing opening. A fastener extends through the fastener opening and engages the bushing.