Abstract:
An inner casing for a diffuser-combustor assembly of a gas turbine engine is disclosed. The inner casing may include an outer-ring, an inner-ring circumscribed by the outer-ring, and a strut having a body extending between the inner-ring and the outer-ring. In addition, the inner casing may include a reinforcing-pad.
Abstract:
A pre-diffuser and exit guide vane (EGV) system for a gas turbine engine includes an annular EGV assembly containing a number of guide vanes and having an annular opening bounded by a radially inner annular sealing surface at a first radius and a radially outer annular sealing surface at a second radius. First and second seals substantially matching the first and second radii respectively join the EGV assembly to an annular pre-diffuser having an annular opening bounded by radially inner and outer annular sealing surfaces at substantially the first and second radii. The seals seal the inner sealing surface of the EGV assembly to the inner sealing surface of the pre-diffuser and the second seal seals the outer sealing surface of the EGV assembly to the outer sealing surface of the pre-diffuser, such that the EGV assembly annular opening is in fluid communication with the annular opening of the pre-diffuser.
Abstract:
A hydrostatic seal and vibration damping apparatus for a gas turbine engine adapted to reduce vibrations during cold engine start-ups is disclosed. In one disclosed configuration, the vibration damping apparatus is comprised of a temperature sensitive control ring having a relatively high coefficient of thermal expansion adapted to expand quickly at relatively low temperatures to protect the hydrostatic seal during such gas turbine engine startups. At operational temperatures, the control ring is adapted to become separated from the hydrostatic sea.
Abstract:
A pre-diffuser may include a plurality of struts, and each strut may have a leading edge. An upper contour of the leading edge may have a forward end and an aft end, and may include a first radius and a second radius. The first and second radii may be associated with the forward end and the aft end, respectively. The first radius may also be located farther forward than the second radius, and may be larger than the second radius.
Abstract:
A gas turbine engine mid-turbine frame includes inner and outer cases that are arranged about an engine axis. A radial plane is arranged normal to the engine axis. The inner and outer cases are secured to one another by a tie rod that extends along a longitudinal axis. The longitudinal axis is arranged at an acute angle relative to the radial plane.
Abstract:
A hydrostatic seal and vibration damping apparatus for a gas turbine engine adapted to reduce vibrations during cold engine start-ups is disclosed. In one disclosed configuration, the vibration damping apparatus is comprised of a temperature sensitive control ring having a relatively high coefficient of thermal expansion adapted to expand quickly at relatively low temperatures to protect the hydrostatic seal during such gas turbine engine startups. At operational temperatures, the control ring is adapted to become separated from the hydrostatic sea.
Abstract:
A combustor section of a gas turbine engine has a diffuser case with a structural cone having variable wall thicknesses strategically located for reducing localized stress in the cone.
Abstract:
A flange heat shield is provided. The flange heat shield may comprise an annular body having a forward end opposite an aft end. The forward end of the flange heat shield may comprise a radial snap configured to interface with an inner surface of an engine case. The inner surface of the engine case may comprise an airflow ramp forward of the radial snap. The aft end of the flange heat shield may comprise a plurality of notches defining voids on the aft end. The aft end of the flange heat shield may also comprise mounting tabs configured to couple the flange heat shield to the engine case.
Abstract:
A method of monitoring a gas turbine engine includes the steps of: (a) receiving information from actual flights of an aircraft including an engine to be monitored, and including at least one of the ambient temperature at takeoff, and internal engine pressures, temperatures and speeds; (b) evaluating the damage accumulated on an engine component given the data received in step (a); (c) storing the determined damage from step (b); (d) repeating steps (a)-(c); (e) recommending a suggested future use for the component based upon steps (a)-(d). A system is also disclosed.
Abstract:
Aspects of the disclosure are directed to a system for an engine having an axial centerline, comprising: a diffuser case, a turbine case, and a turbine vane support, where the diffuser case and the turbine case are coupled to one another via a substantially radially oriented flange, where the turbine vane support includes a heat shield for the flange, and where the turbine vane support includes a radially outward projecting tab that couples to the turbine case via a radial interference fit.