Abstract:
Disclosed are saturated cyclic monopolymers derived from hexyne, octyne, nonyne, pentadecyne and saturated cyclic copolymers derived from acetylene and a second alkyne monomer that is hexyne, octyne, nonyne, or pentadecyne.
Abstract:
Disclosed are saturated cyclic monopolymers derived from hexyne, octyne, nonyne, pentadecyne and saturated cyclic copolymers derived from acetylene and a second alkyne monomer that is hexyne, octyne, nonyne, or pentadecyne.
Abstract:
A tetraanionic OCO pincer ligand metal-oxo-alkylidene complex is prepared from a trianionic pincer ligand supported metal-alkylidyne. The metal can be tungsten or other group 5-7 transition metal. The tetraanionic pincer ligand metal-oxo-alkylidene complex, a trianionic OCO pincer ligand metal complex, or a trianionic ONO pincer ligand metal complex can be used to polymerize cycloalkenes. The poly(cycloalkene)s are predominantly cis-alkene macrocyclics.
Abstract:
A catalyst comprising a NCN pincer ligand group VI complex is capable of being used as an olefin polymerization or isomerization catalyst that does not require an expensive cocatalyst. The complex has the NCN pincer ligand in a trianionic form with the group VI in the +3 oxidation state or the +4 oxidation state and complexed to an anionic hydrocarbon group, or the complex has the NCN pincer ligand in a dianionic form with the group VI in the +2 oxidation state. The complex is capable of initiating the polymerization of alkenes without an added activator. The presence of a water scavenger and activator or cocatalyst, such as triisobutylaluminum, increases the catalytic activity. The complex is capable of selectively isomerizing 1-alkenes to cis/trans 2-alkenes.
Abstract:
An aptamer-N-heterocyclic-carbene metal complex conjugate (aptamer-NHCM conjugate) or an aptamer-bis-N-heterocyclic-carbene metal complex conjugate (aptamer-bis-NHCM conjugate) includes an aptamer coupled through a hydrolytically stable bond to an N-heterocyclic-carbene metal complex (NHCM) or a bis-N-heterocyclic-carbene metal complex (bis-NHCM). The aptamer-NHCM conjugate is prepared where the chosen aptamer displays selective binding to a cell specific receptor, such that the cytotoxic NHCM can be directed specifically to cells responsible for a target disease (e.g., a specific cancer type). A method of preparing the aptamer-N-heterocyclic-carbene metal complex conjugate involves installing a coupling group to an N-heterocyclic-carbene metal complex that can specifically bond with a functional group on an aptamer; the bond, covalent or non-covalent, is stable hydrolytically in the absence of an environment that promotes intentional cleavage of the bond.
Abstract:
Novel N-heterocyclic carbene ligand precursors, N-heterocyclic carbene ligands and N-heterocyclic metal-carbene complexes are provided. Metal-carbene complexes comprising N-heterocyclic carbene ligands can be chiral, which are useful for catalyzing enantioselective synthesis. Methods for the preparation of the N-heterocyclic carbene ligands and N-heterocyclic metal-carbene complexes are given.
Abstract:
The disclosure provides a method of preparing a functionalized cyclic polymer the method including reacting a metal-alkylidyne compound, metallacycloalkylene compound, or metallacyclopentadiene compound with a plurality of alkynes to form the functionalized cyclic polymer, wherein at least one alkyne comprises a functional group capable of further reacting to form a modified polymer. Also provided is a stereoregular functionalized cyclic polymer prepared by the method of the disclosure.
Abstract:
Disclosed are saturated cyclic monopolymers derived from hexyne, octyne, nonyne, pentadecyne and saturated cyclic copolymers derived from acetylene and a second alkyne monomer that is hexyne, octyne, nonyne, or pentadecyne.
Abstract:
Disclosed are to metallocyclopropene complexes, methods of making same, methods for ring expansion metathesis polymerization, and polymers prepared by the methods for ring expansion metathesis polymerization.