Abstract:
A system for a wind park including: a control system in communication with a plurality of unmanned air vehicles, wherein the control system is configured to deploy one or more unmanned air vehicles during a triggering condition; and wherein the deployed unmanned air vehicles are guided towards an assigned wind turbine and to interact with a blade of that wind turbine in order to control oscillation of the blade. The invention also embraces a method for reducing blade oscillations of a wind turbine, comprising: monitoring for a triggering condition associated with the wind turbine; on detecting the triggering condition, deploying unmanned air vehicles towards a wind turbine and interacting with a blade of the wind turbine using the unmanned air to control oscillation of the blade. The invention therefore provides an efficient approach to controlling blade oscillations with minimal human operator involvement. Drones may be deployed automatically once suitable conditions are detected and may automatically engage with the blades, either by contacting those blades physically, or by interacting with the blades in close proximity, in order to disrupt airflow around the blades thereby reducing oscillations.
Abstract:
A method of removing a wind turbine component includes assembling a transport system having a track, one or more support frames, and a carriage movably coupled to the track, the transport system having a first end positioned inside the tower and a second end positioned outside of the tower such that the track extends through an opening in the tower; raising the wind turbine component off of a platform located within the tower and above the door; moving at least part of the platform to allow the component to pass; lowering the wind turbine component onto the carriage; moving the carriage along the track from inside the tower to outside the tower; and removing the wind turbine component from the carriage. A transport system having a track, one or more support frames, and a carriage is also disclosed.
Abstract:
A system (24) and method are described herein for manufacturing a wind turbine blade (22) proximate to the final installation site of a wind turbine (10). The system (24) includes a creel (72) of feeders (74) configured to apply strengthening elements (62) onto a plurality of shell core sections (26) coupled together and fed through the creel (72). The shell core sections (26) include an external surface (56) with a plurality of external grooves (58) recessed into the external surface (56) such that the strengthening elements (62) are laid into the external grooves (58). The system (24) also includes a deposition station (78) configured to apply an outer surface material layer (82) in fluid form to cover the external surface (56) and the plurality of strengthening elements (62). A curing station (86) heats and consolidates the shell core sections (26), the strengthening elements (62), and the outer surface material layer (82) together into a final consolidated part, with the outer surface material layer (82) defining an external profile of the blade (22) following curing.